
* AD-A262 964

S ELECTE

APR 1 5 1993DI S~CD
II FINAL REPORT

*I DLA900-87-D-0017, DO 0019

ANALYSIS AND IMPROVEMENT OF PINNING ANDI CUTTING RESOURCE SCHEDULING

I

I
I

I

John D. McGregor, Principal Investigator
and David A. Sykes

Department of Computer Science
Clemson University

Clemson, SC 29634-1906

2 095 ~93"0605,5

REPORT DOCUMENTATION PAGE For Apo, ,ed

I. AGEN0CY USE ONLY (Lanke b IenA) REPORT UATE J. REPORT TYPE AND OATES COVERIE

1 2/10/93 7! .,_I i - 12 3 1 9 ?
4, TITLE AND SUBTITLE S. FUNDING NUMSERS

"Analysis and Improvement of Pinning and Cutttng Resourc•t
Scheduling" D LA9 00-67- C(

S. AUTHOR(S)
John D. McGregor
David A. Sykes

7. PERFORMING ORGANIZATION NAME(S) AND AOORLSS(ES) S. P0RfORMING O5r4ANIZANION

Clemson Apparel Research REPORT NUMBER

500 Lebanon Road
Pendleton, SC 29670

9. SPONSORING/MONITORING AGENCY NAME(S) AND AODRESS(E$) '. •PoNSORING / MONTORMN
Defense Logistics Agency AGENCY REPORT NUMBER

Cameron Station
Alexandria, VA 22304-6.00

11. SUPPLEMENTARY NOTES

12a. OISTRIOUTION iAVAI•LABILITY STATEMENT 12b- DISTRIBUTION CODE

13. ABSTRACT (M.aximum 2QOwords)

The Clemson Interactive Planner is a software decision support tool useful in
planning the use of pinning and cutting resources in a cutting room. The current
version of the software is implemented in Objectworks/Smalltalk, an implementat.vn
of the Smalltalk-80 programming language that is available on a variety of
platforms, including the IMB PC, Apple Macintosh, and Sun SPARCStation. The
current implemeptation was done on a Macintosh and the examples in the following
manual are taken from that environment. All environments are essentially the

same; only the "look and feel" of the windowing system varies accross platforms.

14. 'SUBJET TERMS .1S. NUMBER OF PAGES
143

Clemson Interactive Planner, pinning & Cutting 16. PRCE CODE

17 SECURTY CLASIATON 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT
OF REPORT Of THIS PAGE OF ABSTRACT

Unclassif~ied Unclassified Unclassified UL

NSN 7540-01-280-S00 'a~rnJ(d rfn- 298 (Fev 2-89)

-Vw b"D

I
I
I
I
I

H Clemson Interactive Planner (CdP
3 User's NManual

I John D. McGregor, Principal Investigator
and

David A. Sykes
Department of Computer Science

Clemson University
Clemson, SC 29634-1906

II
mini Decem ber 19932

I

Accesiori
Fo?

NTIS CNAýA&
o! c TAb 13

By
DImr Ibiitton I

IAst dif j:qi or

St-A per telecon, Ms. Kerlin, DLA
Alex., VA 22304

4-15-93 JK

I1

I

I

Contents

1I Introduction 3
1. 1 P u rpose3

1.2 Scope 3
1.3 Background .

2 Running a Simulation 8
2.1 Creating a Scenario

2.1.1 Tasks and Work Assignments
2.1.2 Plans
2.1.3 Cutting Room
2.1.4 Simulation Runs 17

2-2 Running Simulations 17
"2.3 Customizing the System

I A Installation 29

Im

I

List of Figures

I.1 A sample cutting room

2.1 The initial screen for a simulation run.
2.2 The screen for a simulation run after restart. 2tj
2.3 The screen for a simulation run after one step . 21
2.4 The screen for a simulation run after two steps. 22
2.5 The screen for a simulation run after three steps. 23
2.6 The screen for a simulation run after four steps.. 4
2.7 The screen for a simulation run after five steps. . 25
2.8 The screen for a simulation run after eight steps.
2.9 The screen for the end of a simulation run.. 27

I2

Chapter 1

Introduction

1.1 Purpose

The Clemson Interactive Planner (CFP) is a software decision support tool
useful in planning the use of pinning and cutting resources in a cutting room.
This manual describes how to use CflP .

The current version of the software is implemented in Objectworks\Small-
talk, an implementation of the Smafltalk-80 programming language that is avail-
able on a variety of platforms, including the IBM PC, Apple Macintosh. and
Sun SPARCStation. The current implementation was done on a Macintosh and
the examples in this manual are taken from that environment. All environments
are essentially the same; only the "look and feel" of the windowing system varies
across platforms.

1.2 Scope

The information in this document describes the the current implementation
developed under the sponsorship of the Defense Logistics Agency and Clemson
Apparel Research. The current implementation is a prototype and contains only
a relative few of the features the final system should contain. It is not suitable
for production use, primarily because the user interface is primitive, but also
because some of the class definitions required are incomplete.

This prototype has been produced as part of a research effort to use object-
oriented technologies to adapt simulations easily to a wide variety of cutting
room environments. The implementation-and this manual-focus on those
portions that have been implemented and provide a look at how a production
system might look. Please note that software still needs to be written. The
information in this manual corresponds to the state of the system at the end
of current funding of the project under which it was developed. This document

1 3

I
I

It

and the document CCIP System Architecture serve to document the status ct
the project at that time.

Instructions on installing the prototype system are provided in Appendix A.

1.3 Background
CelP is a simulation system intended as a tool for assisting in the planuing of
the allocation of resources in a cutting room. Pinning and cutting operations inl
an apparel plant are responsible for producing the pieces of fabric that go into
the construction of an apparel item. These operations are performed in a cutting
room using a variety of at .omatic and manually-operated machines designed to
spread fabric in multiple layers and cut them. A cuttirng room manager must
make a variety of decisions with respect to how the various resources-operators.
workstations, and materials-are scheduled to produce cut bunfiles on time and
at low cost.

The cutting room's function includes the processing c.f o'). of fabric into the
pieces required for a garment's manufacture. A typical in', 'S dress shirt, for
example, comprises about sixteen pieces that are sewn toge .:er before buttons
are attached. Each of these pieces is produced by the cutting :,.oem in accordance
with a set of requirements derived from a wide range of p..rameters such as
fabric, fabric pattern, garment size, and garment style. Thcý ; rimary goal of the
cutting room manager is to supply these pieces by the time `iey are needed by
the sewing room, but to supply them at the lowest cost bot i in terms of labor
and of fabric utilization (i.e., minimize the amount of scrap,

The scheduling of cutting room resources is a difficult p,. .lem complicated
by many factors. A cutting room contains equipment desig!!ed to spread and
cut fabric. Machines have been developed to spread fabric in multiple layers
on a table. Other machines have been developed to cut through the layers of
spread fabric, thereby producing dozens of cut pieces at a time. Some of these
machines are operated by hand and others are operated under comliputer control.
A spread up to sixty feet long can be fed automatically through a cutter under
computer control to produce the cut pieces processed by the sewing rooms.
Some specialized dye cutters can both spread and cut, needing only a single
operator to monitor the machine.

A variety of machines can be found in a typical cutting room. Figure 1.1
shows a sample cutting room with three tables supporting automatic spreading,
a BITE cutter that can be positioned at the end of any of these three tables and
process a spread of arbitrary length, a table that supports automatic spread-
ing and pinning but manual cutting, and a smaller table that supports manual
spreading and manual cutting. Pinning is required for garments that have -'en-

gineered placements" -for example, plaid trousers for which the plaid pattern
must match between the left and right halves of the garment,, meaning that the
cuts must be matched to the pattern. Pins are used to keep the pattern aligned

1 4

F

* A

13 D E

I C

Figure 1.1: A sample cutting room. A, B, C: tables with automatic spreaders;
D: a BITE cutter that can be positioned at the end of any of three tables
and process a spread of arbitrary length; E: a table that supports automatic
spreading and pinning but manual cutting; and F: a smaller table that supports
manual spreading and manual cutting.

on all of the layers of fabric in a spread.
Among the decisions that a cutting room manager makes are:

£ which operator to assign to which task. Each operator has different skills
and efficiencies that can be applied to the tasks that need to be done.

* whether operators should be scheduled to work overtime or perhaps whether

another shift should be added. If the workload is heavy, then the cutting
room might have to work more hours. Overtime raises production costs.

e how to reallocate resources when an operator doesn't show up for work,

an operator leaves work early, or a machine goes down unexpectedly.

* which fabric to spread on which table. Once a spread is begun, it cannot

be moved to another table without introducing wrinkles, although most
spreads can be slid to another part of the same table. Most spreads do
not occupy the entire length of a table and more than one spread can
be placed on a table. However, if the cutting is to be performed by an
automatic cutter, then the cutting can only be done in the order that the

I 5

spreads lie on the table since the cutter is fed a spread from one end of
the spreading table. Often a style-for example, jeans, tee shirts, dress
shirts, etc.-requires several fabrics and spreads. Consider a shirt with a
striped front and a polka-dot collar. Spreading must be planned such that
the cutting for all the striped parts can be done near the time that the
cutting for all the polka-dot parts is done so that the shirts can be sewn
without a need to store any cut parts for them for very long.

Some spreads are limited to certain tables because of the fabric qualities
or how cutting must be done. For example, only one automatic spreader
in a cutting room might be suitable for knit fabrics or a pinning table
must be used for spreading a plaid fabric to meet engineered placement
specifications.

* which fabric to spread next. Some spreads take a long time-for example.
spreads that require pinning for engineered placements, spreads that have
many plies, spreads of very thin fabrics, or spreads that cannot be done
using automatic spreading equipment-and tie up resources for a long
period of time.

* how much variance to use for a cut. If the fabric available is not sufficient
to produce an exact order, a decision must be made concerning how much
more or less to cut. If a relatively small amount of fabric will be left after
a cut, then a decision must be made concerning how many more pieces to
cut (and which size(s)) ii order to minimize scrap.

* which production orders can be combined. Fabric utilization can be ito-
proved by combining two or more production orders that use the same
fabric as long as there is sufficient fabric available. This combination can
be achieved either by placing markers end-to-end on a spread or by com-
bining the individual markers into a single marker'. Fabric utilization is
usually improved if the latter technique is used, but this technique takes
more lead time in order to produce a marker. Lying markers end-to-end
produces fabric savings by reducing waste on the cut ends of a spread.

Production orders requiring the same cuts can sometimes be incorporated
into a single spread. This is desirable because it reduces cutting time and
can save fabric.

* which spread to cut next. As illustrated in figure 1.1, a cutter may be
shared by multiple spreading tables. A decision must be made as to which
spread to cut based on the time that will be required for cutting and
subsequent needs for the spreading resources that will be freed up after
the spread is cut.

A marker is a layout of the pieces to be cut from a given length of fabric, usually plotted
on a large piece of paper and placed atop a spread to identify the cuts. Labels printed on the
paper pieces identify-or mark-the cuts that are produced.

6

* what to do if a production order for a sample arrives The production
of sample garments generally takes priority over regular production arid
preempts jobs in progress.

The development of a cutting plan for some period of time-for example.
a day or a week-is an art generally based on a cutting manager's experit,:ce
Good cutting room managers are difficult to find and, as a relatively scarce
commodity, difficult to keep at a plant. Our goal is to help a cutting room
manager make decisions about cutting room resource utilization such that costs
are minimized and fabric utilization is maximized. Our solution is a decision
support tool that simulates the cutting room in order to predict the outcome of
various plans.

Chapter 2

Running a Simulation

In this chapter, we explain how t(create a scenario. A scenario consists of a
cutting room and a plan for allocating the resources-equipment, materials, and
operators-to the work assignments to be accomplished.

2.1 Creating a Scenario

Putting a scenario together requires describing a cutting room. defining r'-

sources, and creating a plan to be used as the basis fo. a simulation. In this

section, we will describe the construction of a scenario involving a cutting room
with two tables that can be used for both spreading and cutting. Three up-
erators, designated as Huey, Dewey, and Louie, are available for work. Rolls
of fabric are available for the various tasks to be performed. Construction of
other scenarios parallel construction of this example. [The file scenario.txt

on the distribution diskette contains the code necessary to construct and run
this scenario.]

A scenario is constructed by a sequence of Smalltalk statements. The cur-
rent implementation does not include an explicit class to represent a scenario.

though perhaps such a class should be provided. Nor does this implementation
provide any interactive support for describing a cutting roomi. The approach
to defining a scenario in Smalltalk provides greater flexibility during prototype

development, but probably more flexibility than is required for the typical user.
We expect that, in practice, the need to use Smalltalk will be supplanted by the
use of interactive tools and dictionaries of resources.

'Ideally, a cutting room would be described by arranging pieces of equipment on an area
of a computer monitor screen.

Resources

The first step in the construction of a scenario is the definition of the resources.
Resources comprise the equipment, operators, -nd rolls of fabric and other ma-
terials that are found in the cutting room.

The segment of code below defines the resources in the example scenario.

Allocate equipment resources:
We define the two pieces of
equipment and put them in
an ordered collection. Thizs
collection will be used to
establish priorities in the

tablel Table makePair: 'Table 1'. simulation, but the ordering

table2 Table makePair: 'Table 2' is really unimportant.

equipment := OrderedCollection The message takes a
with: tablel with: table2. string designating the namr

of the table as its
argument. The message
designation is taken from

DEVS, and is admittedly
not very user-friendly.

Define three operators, IHuey, Dewey, and Louie

huey :- Operator new
name: 'Huey'.
number: 1.
status. #idle:
skills: (Dictionary new

at tablel put. 1 00.
at table2 put. 1 00:
yourself), Defin• ' •zir Uuui

image, (Image employee number I ,
extent: 16 (0 16 l J! icicrc aU
depth: Ia ls 7h • a , . .

palette. MappedPatette whiteBlackbitv #[t reprf .e nt this op ,eratur

16r01 16rcO 16r02 16r20
IOb)rrttork. docurnntaticn
16r08 16r08 16r09 16rc8 for details on onagr
16r05 16rd0 16r09 16r0

16r01 16rd) 16r07 16r70
16r18 16r0c 16r61 16r43
16r45 16r51 16r49 16rc9
16r49 16r49 16r49 16r49)

pad. 16) reflectedlnX.
yourself.

10

dewey :=Operator newI name; 'Dewey',
number: 2Z3 status: #idle,
skills: (Dictionary new

at: tablel put, 1.00:gat: table2 put.t 1 00,
yourself);

image: (Image
extent:- 16 Q~ 16
dlepth: 1 Sirnislatly. detin(~ýr vvIpalette: MappedPalette whitel~lack ec
bits: #[

16r0l16lrcO 16r02 16r20
16r04 16r10 16r09 16r48
16r08 16r08 16r09 16rc8

16r05 16rdO 16r02 16r20
16r~l 1brcO 16r07 16r70
16r18 1brOc 16r60 16rc-3
16r45 16r51 16r49 16r49
16r49 16r49 16r48 16rc9I pad: 16) reflectedlnX.

yourself,

iouie = Operator new
name: 'Louie';

number: 3;
status: #idle;
skills: (Dictionary new

at: tablel put: 1.00;
at: table2 put: 1 00:
yourself);

image: (Image
extent: 16 0 16

depth: 1
palette: MappedPalette whiteBlack And operator Louir

bits: #[
16r01 16rcO 16r02 16r20
16r04 16r10 16r09 16r48
16r08 16r08 16r09 16rc8
16r05 16rdO 16r02 16r20
16r01 16tcO 16r07 16r70
16r18 16rOc 16r60 16r43

16r44 16r51 16r48 16r49
16r48 16r49 16r49 16rc9j

pad: 16) reflectedlnX.
yourself.

A resource collecton iS a
operators := ResourceCollection collection of resources that

with: huey with: dewey with: louie. is able to display itself as a

collection in a view.

12

Create some fabrics and rolls of fabrics:

(cotton := Material new) Allfabrcs are 0oO cotton
description: '100% cotton'.

redCotton -= Fabric

color: Color red weave: nil
weight: I thickness: 0.0625 inches

material: cotton defectRate: 0.0.
greenCotton := Fabric

color: Color green weave: nil Create g ree ronei of cottond
weight: 1 thickness: 0.0625 inches one green. one blue, and
material: cotton defectRate: 0.0.

blueCotton := Fabric
color: Color blue weave: nil
weight: 1 thickness: 0.0625 inches
material: cotton defectRate: 0.0.

greenRoll := FabricRoll
fabric: greenCotton
length: 500 feet width: 54 inches,

blueRoll := FabricRoll The length and width of
fabric: blueCotton each roll is specified, and
length: 200 feet width: 54 inches. each roll is given a name.

redRoll := FabricRoll Note that units of feet,
fabric: redCotton yards, and inches are used.
length: 1000 feet width: 60 inches. All lengths must include

the units of measure.
greenRoll name: 'green cotton'.
blueRoll name: 'blue cotton'.
redRo!l name: 'red cotton'

materials := ResourceCollection Put the rolls of fabric in a
with: greenRoll with: blueRoll with: redRoll. resource collection.

2.1.1 Tasks and Work Assignments

Once resour:es have been defined, they can be used in work assig;nments. A
work assignment is the association of a task with the equipment, operators, and

13

I

i
I

materials. There are currently four kinds of tasks in ClIP . spreading, cutting,I moving, and bundling. Each task has a different class defined for it. The results
of a work assignment is represented by a ticket. So, for example, if fabric is
to be spread and then cut, the result of the spreading task is associated with
a ticket and that ticket serves as one of the materials required for the cutting
task. Tickets, among other things, prescribe an ordering to work assignments.

ticket1 := Ticket new: 'Ticket 1'.
ticket2 := Ticket new: 'Ticket 2'. Create three tckets now for
ticket3 := Ticket new: 'Ticket 3'. convenience.

spreadingTaskl := SpreadingTask
spreadTemplate- (SpreadTemplate

new: 4 layersOf: greenCotton
offWidth: 54 inches
ofLength: 60 feet)

rolls: (ResourceCollection There are four tasks to be
with: greenRoll with: blueRoll) performed:

marker: nil.
spreadingTask2 := SpreadingTask * spread 4 layers of

spreadTemplate: (SpreadTemplate greaen cotton
new: 10 layersOf: redCotton
ofWidth: 60 inches * spread 10 layers of

ofLength: 30 feet) red cotton
rolls: (ResourceCollection with: redRoll)
marker: nil. o spread 6 layers of red

spreadingTask3 := SpreadingTask cotton
spreadTemplate: (SpreadTemplate * spread 6 layers of

new: 6 layersOf: redCotton blue cotton
of Width: 60 inches
ofLength: 3 yards) A spread template defines

rolls: (ResourceCollection with: redRoll) the length, width, number
m arker: nil. Of le s, and h nmb,.e r

spreadingTask4 := SpreadingTask ec ply. a o' ot
spreadTemplate: (SpreadTemplate

new: 6 layersOf: blueCotton
ofWidth: 54 inches
ofLength: 50 feet)

rolls: (ResourceCollection with: blueRoll)
marker: nil.

14

2.1.2 Plans

Once the tasks are set and the resource sets are defined, a plan is constructed.
A plan comprises a sequence of work assignments, each designating a task, a
set of one or more operators to work together on the task, and a workstation
at which the task is o be performed. A workstation is a section of a piece of
equipment and can vary from assignment to assignment. For example, a spread
might be constructed on two-thirds of the left end of a table and another spread
might be constructed on the right two-thirds. Two workstations at the same
table are involved. (Obviously, one of these tasks cannot be started until the
other spread has beer. moved. Thus, the demand for workstations at the same
piece of equipment specifies a partial ordering of work assignments.

A workstation is designated as two percentages of the width and length of a
piece of equipment, which is always assumed to have some rectangular shape.
This area is referred to as a section. Thus, the entire equipment can be a single
workstation, designated as width: 0-100%, length: 0-100%. The left half of a
workstation is designated as width: 0-100%, length: 0-50%.

A plan must be given a start time. This time sets the context for a simulation
run. The time is significant because workers have work schedules (default is
8:00 A.M. to 5:00 P.M. with an hour for lunch at noon and 15-minute breaks at
10:00 and 3:00).

15

plan := Plan new.
plan startTime: (SimulationTime

date: (Date newDay: 1
month: #October year: 1992)

time: (Time fromSeconds: 0)).
wal := WorkAssignment

workstation: (Workstation
at: tablel section:

(Section origin: 0 0 corner: 0.5 1))
operators: (Set with: huey)
task: spreadingTaskl
ticket: ticketi.

wa2 := WorkAssignment
workstation: (Workstation

at: table2 section: Define four work
(Section origin: 0.25 0.25 assignments, one for each

corner: 0.75 0.75)) task,
operators: (Set with: louie)
task: spreadingTask2
ticket: ticket2.

wa3 := WorkAssignment
workstation: (Workstation at: table2)
operators: (Set with: dewey)
task: spreadingTask3
ticket: ticket3.

wa4 := WorkAssignment
workstation: (Workstation

at: tablel section:
(Section origin: 0.5 0 corner: 1 1))

operators: (Set with: huey)
task: spreadingTask4.

plan add: wal; add: wa2; add: wa3; add: wa4. Put the work assignments
in a plan. Order matters.

2.1.3 Cutting Room

The final step in the construction of a scenario is the placing of the plan and
resources in a cutting room. The cutting room itself is a DEVS model, and tile
argument to makePair: is the name of the cutting room.

16

I
I

5 cuttingRoom := (CuttingRoom makePair: 'ACME Cutting Room'
containing: equipment
operators: operators3 materials: materials).

cuttingRoom plan: plan.

I
2.1.4 Simulation Runs

I A simulation run is created by associating a root coordinator with the cutting
room model, specifying a starting time for the simulation, and specifying the
time at which simulation should stop. Finally, the model is associated with
a simulation window, an instance of the class SimulationRunView, from which
simulation is controlled as explained in Section Running Simulations.

5 scenario := RootCoordinator new: 'RC:ACME Cutting Room'.

startTime := (SimulationTime
date: (Date newDay: I month: #October year: 1992)3 time: (Time fromSeconds: 0)).

scenario
startTime: startTime;
timeLimit: (startTime addDuration: 5 days);
linkToParent: (cuttingRoom processor).

Cursor wait
showWhile: (SimulationRunView tryOn: scenario].

I 2.2 Running Simulations

We have just described the specification of a scenario and the method for cre-
tingofawndow to control, simulation. The simulation view providcd by the

current implementation is shown in Figure 2.1.
The window labeled "ClIP: RC:ACME Cutting Room" contains the follow-

ing components:

"* a Restart button used to reset all the models in the run.

* a Go button used to start or resume a simulation run.

"* a Pause button used to interrupt a simulation run during execution.

17

File Edit

5 ClIP: RC:RCME Cutting Room
Restat Go IPase Step

RC ACME Cutting Room
Last event: Oct 1, 00:00
Nexd event:Oct 1, 00:00

Oscar .Drop Area Break Area
ae:nil sigma: nil e:nil sigma: nil e: nil si gma: ndx: nil xn rWx:nil

y:rnil Y. iM y:nil

Statt:Oct 1, 00:00

["Table 1[000,0.5@01T: (Huey), a Spreadii
["Table 2[0.2S@0.25,0.75@0.75r:{Louwe

Table 2[0@0,1 @ ty: {Dewey}, a Spreadir

Table I Table 2
e: nil sigma: nil nil ;: nil sigma: nil nil
x nil x: nil
y nil y: rnl

Figure 2.1: The initial screen for a simulation run.

18

I
I

"" a Step button used to single-step a simulation, meaning to execute one

iteration of the loop being performed by the root coordinator controlling
the simulation.

"" a text view (under the buttons) that provides the time of the last simula-
tion event and of the next simulation event. These values are maintained
by the root coordinator.

"" a set of views, one for each atomic model in the system-that is, one for

_ the various components of the cutting room. The default arrangement

is for the planner and dispatchers to show across the top line and for

the equipment to show across the bottom line. Each view is labeled by

its name and each provides a graphical representation of its current sta-

"tus. All models show the values of e, x, y, and sigma associated with the

management of atomic models. Below this information, each view reflects

model-specific information:

- Oscar is a planner and shows the current plan. [A graphical repre-

sentation would be preferable as would a scrollable view, but time

did not permit their implementation.]

- Drop Area is a dispatcher of materials. The three cylindrical objects

shown represent rolls of fabric. The horizontal representation of each

roll shows that the roll is currently not in use. A vertical orientation

designates that the roll is in use (or about to be since more than

one iteration of the root coordinator can apply to a given simulation

time).

- Break Area is a dispatcher of operator resources. The three icons

represent Huey, Dewey, and Louie. These operators are shown idle

since they are outlined in black.

- Table 1 shows a rectangular area shaded gray. This represents the

surface of the table. An active workstation at a table is shown shaded

black. The nil showing in the upper right-hand corner reflects the
current phase of the model.
Table 2 is similar to Table I and is, in fact, of ,he same class.

When a window for a simulation run is first displayed, no restart has been
done on the root coordinator. Consequently, all values for simulation-
related information shows nil.

Figure 2.2 shows the window after the Restart button has been pressed. Note

that some of the fields have changed from nil to duration values, indicating the

time to the next internal transition. The tables show they are in the #passive

phase-that is, no work is in progress.
Once a run has been restarted, either of the Go or Step buttons may be used

to run the simulation. The Go button is equivalent to repeated pressing of the

*11

I

E r 6 Fl dtClIP: RC:ACME Cutting Room

IGOtei I Pause IStep

Last evert: Oct 1, 00:00
Ne4d event: Oct 1, 00:00

Osca Drop Area Br'eak Area
e: 0 mint~es sigma: 0 minutes e 0minutes sigrma orever e 0minutes sigma torever
X:nHI x:d rlX:nil
YI yNi y:e NIY:Nt

Start: Oct 1, 00:00{1(
[Table 1(000,0.S0lr: (Hueya Sprea~ds
[7able 2[0.2S@0.2S,,.75@0.75r:{Lou~ee(

,;[Table 21000,1@ IT: (Dewey), a Spreadir

ITable 1 Table 2
e: 0 minult es 3i gme: forewe #passive e: 0 minutes sigma: forever #pessive
xrnh x: ni

Y. NI y: rWl

3<Empty> <Empty>

Figure 2.2: The screen for a simulation run after restart.

I 20

File~t jGo Ci:Pause Rom-Ve

RC.ACME Cutting RoomILat event: Oct 1, 00:0 0
Next event: Oct 1, 00:00

Oscar Drop Area Break Area
e. 0minutes siqma:0 minutes e: 0minutes sigma forever eý 0 minutes 5igma. 0 minutes
x: nil X: nil x:.Nplai-Start: Oct 1, 00 001 Table 1[@0,0I
y: Xplen$-Start: Oct 1, 00:00('Table I(0@(y: nil Y:nil

I[*Table icmsI:ýuy.aSre
[7able 2r0.25@O.2S,0.7S@b0.7!5:(Louie 0)
[*Table 2(0@00 1 @ I]: (Dewvey). a Spreadir

Table I Table 2
e: 0minutes sigma. oreve #PasaiVC e: 0 min utes 31igma: torevsr # passive
x:*plariý-Statt Oct 1, 00.00 Table 1[0@0,0.5@ IT: (H ey), aSpr# x:Dplan-Start:Oct 1,00:00OLTable 1(0@0,0.5@11' (Hi ey),aSpr
Y:nil y: nil

(0IEmpty), <Empty>

Figure 2.3: The screen for a simulation run after one step.

Step button. The Pause button may be used to interrupt a "Go"-ing simulationI run.
Figure 2.3 shows the window after the Step button has been pressed once.

On this first step, the break area has determined that all three operators are on
duty and can be dispatched to the various tables to await the arrival of materialsI and the availability of workstations. This determination is reflected in the fact
that the operator icons are outlined in white.

Figure 2.4 shows the window after the Step button has been pressed again.I Note how operator Huey (designated by the "H" on the icon) has been dis-
patched from the break area to Table 1, the equipment at which his next work

I 21

S File Edit . •

FClip: AC:RCM Cutting Room -

RCACME Cutting Room
rLot event: Oct 1, 00:00

NeA event: Oct 1, 00:00

03cer Drop Aea. Break Aea
e: 0 minut es siM& forever e: 0 minute3 sigma: 0 minutes e: 0 minutes sigma. 0 rinutes
x nil x:plp-Stett:Oct 1,00:00('Table 110 0, x:Dplan-Star:Oct 1, 00:O0['Table 1[C@0.0G
yp. op4-Stt: Oct l, O:0l'Table 1[0@(y:nd y lout 1-{Huey)

tut.:Oct 1, 00:00

"Table 1[0@0,0.5@ IT: (Huey), a Spreadi J UE
.ITadle 2[0.2S90.25,O.7 @0O.TST -jLo uie {}}I 'Tabe 2[0@0,1 @ IT: (Dewey)},&a Ieadir

I T~~~~1able 119501 if!rnv r(mmutes agaoee Spree e~a
mTable 1 Table 2
e. minutes sigmapforever #peope e:O0wrute3 sigmaforever
x #optn--(Huey) x ptan-Stert: Oct 1, 00.00{ Table 1[0@0.0 5@ (H ey),a 5pr

y:nil y. ru

(Empty) (Empty>

Figure 2.4: The screen for a simulation run after two steps.

22

~~ ClCP: RC:ACNIE Cutting Room --

RC:AME Cu~ttng Room

Last even~t: Oct 1, 00:0 0
Ne~d event: Oct 1, 00:00

Oscar Drop Area Break Ar'ea
e:0mnutes sigm, forever e: 0 mnwutes sigma: 0 mi~nutes e: 0 mtnutes ýiqma. (orever

x: M ~x: #plan-Stett: Oct 1, 00:00[Table 110@0, X: #pten-Start Oct 1, 00 001Table 1(C @0,O'
y. Xplai-4-Start: Oct 1, M00:00fable 1[0@(y, nl~ yý Sou2-(Dewey Lowe)I

Start:Oct 1, 00:00 {
["rable 1[0@0,0.5@ r:{i(Huey), aSpreadu
['Table 2t0.25@o.25,0.7S@0.7ST:{(Loue 1(3['Table 210@0, 1@ IT:{fDewiey),aSpre~dir

Tablea I Table 2
C: 0 nutneS sigma.:orever #passive e: 0minutes sigma~forever Spassive

x:optvtl-Huey) ,cloptrln--(DeweyLowe I
y:ni y: ri

I Emptyý (Empty)

Figure 2.5: The screen for a simulation run after three steps.

assignment occurs. T he icon shows hIs-r as being idle, presumnably waiting fr
m aterials to arrive since the equipment itself is not in use. (Note that no time
has actually passed as reflected in the root coordinator view.] The drop area is
ready to dispatch the three rolls of fabric at the end of this ste,

Figure 2.5 shows the window after th, Step button has been pressed again.I The operators have all been dispatched to the equipment at which they can next
start working according to the plan.

Figure 2.6 shows the window after the Step button has been pressed fourI times. At this point, Hluey can begin work on the next work assignment, since
the necessary mnaterials have arrived, having been dispatched from the drop

I 23

Fil Edit

I Reltart Gas
RC:ACME Ct~tig Roorn
L ast everA Oct 1, 00 0 0
Ne~d event: Oct 1, co OG

OsaOrop Aret E eak At a
eC. 0~e fE*s i49TS&orever C 0rrwUt3 Si.w 0 iruAt-$ 'e 0 rmvn; ige~ tAonev

)L nd x 8Plw,-Silif Oct 1, 00 0 0('Tabie I [00, r xp 5 4 art ,-Oct ~O ~bet~i O C
Y Opwu4-Stut: Oct 00 00(Table 1I Ok(y, SutI -('Vee colt on" bue c ltot Iy Y oul 2-(Oe'ieY L ow~e

Skat. Oct 1, 00:00
U'Table 1101P0,0.50 IT -uey),a!5pread%
(Table 10-2500.25,0 'o7st.7r j Lowe 0

V~ab,400,t1T:;Dewey).a Spreadr

Table I'al2
e: 0 mu'tteS SiWMa 5 -ýnuel #working t 0 mnut les sigmaS Iorevef fp iv
x Ornilln- *gre en cott on 'b u e c tori n' SiOOb,(WHOvey Lowe)
ynil y, ni

'Table P11090P,0.5@ 11j Em ply

Figure 2.6: The screen for a simulation run affer four stieps~

* 24

r File Edit
* . ~ ClIP: AC:ACME Cutting ROOM ~

Restwt Go jPause IS' _______

RCACME Ciutmg Room
Lost eyent:Oct 1, 00:00V
N e~devent: Oct 1, 00:051

Qscar Drop Area r Break Nee
a- 0 minute3 3igmf~orevem e., 0 mrninue mgma forever C, 0 mw~utes sigma forever
X nd X: Spt.,-Stwt: Oct 1. 00.,00{'Table l(CO0, x. $plai-5twt:Oct 1, 00 00¶'Table q1 00
y:Xplan4-Stwt:Oct 1, 00:00[Table ItO@(y #o ut?2-(*re dcott on') y Sout2--(Dew"eLotme)

Start: Oct 1, 00: 0 0
['Table 1[0@000.50 IT: (Huey), a Spreachi
lTable 2[0.2500.25,0,7500.7STr(Louie (
I Table 210@0, 1@ IT:{~ewey), a Spreadir

Table I Table?2
e. 0minutes 3igma:S mriute3 Swo,*wlg e. 0 rminutes sigma. 5 miwnutes Xwoskin g
x: Ormafibn--Cgre en c ott on" blue c ott on') x: ImaWn-fred cottoni

1'able Ij[0@0,0 5@ II 'Table 7[t0.25@0.2S,0.7S@0-7S11

Figure 2.7: The screen for a simulation run after five steps.

25

r File Edit C
g i - CliP: RC:ACME Cutting Room . i= I
Restart Go Pause s*P

RC:ACME Cutting Room
Last event: Oct 1, 00:0 05
Next event: Oct 1, 00:05

Oscar Drop Area ,reak Area,
e;Sminutes sigma:forever e: 5 rrw*ute si gma.orever e.S r5r ue3 sigma forever
X:'done-Wogrm neg5nt Sticst Oct 1 x: #W-'greencotton"-buecotton' <Ti ket x:#i--4Huey)
y:plar'-Stut:Oct 1, 00.0]: Table I(00(y: olut1-'bluecotton') y$outl-(Huey)

IStart:Oct 1, 00:00
[Table i(000,0.S@ IT: (Huey). a Spreadii
(Table 210.2500.25,0.7500.75T: {Lotie C•D'IE
['Table 21000,1@ 1T: (Dewveyy), a Spreadir

!:al _______, __iffWy__a_ e
Table I Table 2
e: 0 minutes sigrn. 5 minutes #working e 0 A inutes sigma: S minutes #woring
x: Ormiillr"-'blue colton' xx 5Omrrk-(i're d oitton')
y, #mallOul-.(' greencotton"bl:ue cotton' <Ticket 1). y rW

{) {

'Table 11[.5@1,1@11] 'Table 2[[0.25@0.25,0.75@0 7t'l

IY
Figure 2.8: The screen for a simulation run after eight stepb.

area. Similarly, Louie can begin working at Table 2 with the arrival of materials
(see Figure 2.7).

Figure 2.8 shows the window after the simulation run has been stepped until
the third -task has started. Notice how Huey is now working a. a different
workstation at Table 1. Five minutes of simulated time have passed, the time
needed for Huey to complete his first work assignment. Louie has completed
his work assignment, but the simulation has not yet finished processing all state
changes at the current simulation time. Before time advances, all state changes
for Table 2 will have been performed.

Figure 2.9 shows the competed simulation. The tickets have been delivered

26

r # File Edit

. CIIP: RC:ACME Cutting Room . - ,

Ret&t I Go Pause Step

RC)ME Curting Room
Lost ever: Oct 1, 00:10
Ne4t event: hbyfiiiy

Oscar .DropArea Break Area
e: 0 minutes sigma forever e: 8 itnutes 3i-ma;orever e: 0 A rmites sigma. torever
x:.don e-WokYAseigrmentStaist"csOct I x:S1-.{'redco~ton <cTicket 3) x:rX{HDewey)
y. #p*u4-Stat: Oct 1, 00:00['Table IJ0@(y 5ou2--{'red cotton') y:#out 1---Huey)

Stat:Oct 1, 00:00{}{

[Table 1[0@000.50 IT! (Huey•}, a Spreadh
['Table 2[0.2500.25,0.75@0.75T: (LoWe
["Table 2[0@0,1@l]:{Deveya•Spread&
2*e 11,,tl 1(0 if li, ",

Table I .Table 2
e: 0 minutes sigma: forever opasve e: 0 nnute3 signa:forever xpesive
x Small" ' bl ue c ott on') X: gmeaEn{r~ edc Ott on')
y. #medi) ut-(J'bl u e c kt on" } y:-.'WIOut--('rel dcottorn <Ticket 3')

<Empty> <Empty>

Figure 2.9: The screen for the end of a simulation run.

27

B

the system with a minimum amount of programming. Adding a new type of
equipment or other resource can be effected by using inheritance. Adding new
objects amounts to creating new instances of existing or custom classes.

For example, consider adding a new kind of task-say, one to both spread
and cut. The basis for this new task is the class Task which encapsulates tile
knowledge of what it means to be "a task." The new class, SpreadAndCut, is
defined as a subclass of Task in a system or class browser (refer to the doc-
umentation for Smalltalk for details). The only programming required is the

definition of the method that computes the duration of time required to com-
plete the task given operator(z,), materials, and a workstation.

All parts of the system can be customized using inheritance, including views
and the default graphics used for various resources.

I

I

I
I
U

28

Appendix A

Installation

Installation of ClIP requires the availability of Objectworks\Smalltalk, Version
4.1 or higher. A disk containing the necessary files accompanies this manual.

To import the CIP class definitions and support files into the Smalltalk
environment, follow these steps:

1. If necessary, transfer the files on the installation diskette to a disk volume
accessible from within the Smalltalk environment.

2. Start execution of the Smalltalk image on the host system.

3. Open a file browser by selecting file list from the Utilities menu in the
Launcher window. Deselect the "Auto read" feature, type "*.ST" in the
first field in the file list window, then hit the return key. A list of the
files to be imported appears in the file list window. Highlight each file in
turn and select file in from the menu obtained by holding down the Jtirst)
mouse button when the cursor is positioned over the bar at the top of the
list of files. File-in messages will appear in the transcript window. Files
may be processed in any order, but the messages in the transcript window
will depend on the order used.

4. Once all files have been imported, open a system browser by selecting
system browser from the Browsers menu in the Launcher window. The
CUIP classes will appear in categories whose names are prefixed with
"ClIP" or "DEVS".

Correct installation can be verified by running the test in the file simple. tst.
Open a file editor on simple. tst by selecting file editor from the Utilities menu
in the Launcher window. Type "simpte.tst" into the dialog box prompting for
the file name. Double click at either the start or end of the text in the window
to highlight the text and then select "do it" from the menu obtained by holding
down the (first) mouse button while the cursor is positioned over the bar at the

29

I
I
I

top of the text window. A simulation run window will appear. Press the Restart
button with the mouse, and then the Go button. The results of the test run are
written to the system transcript window. Close the simulation window when
execution completes.

i1

I

!

i
i

i

g
I

5 .30

CUIP System Architecture

I

n John D. McGregor, Principal Investigator

and
=" David A. Sykes

S~Department of Computer Science

Clemson University
Clemson, SC 29634-1906

cSDecember 1992
JonD coeoPinia nvsiao

I n

Contents

1 Introduction 1
1.1 Purpose 1
1.2 Scope 3
1.3 Overview of the Document 3

2 Background 5
2.1 Object-Oriented Programming 5

2.1.1 Objects 5
2.1.2 Classes 6
2.1.3 Inheritance 9
2.1.4 Polymorphism and Dynamic Binding 1i
2.1.5 Benefits 12

2.2 DEVS 14
2.2.1 Models 15
2.2.2 Processors 19
2.2.3 Simulation 22

3 System Design 35
3.1 DEVS Implementation in Smalltalk-80 36

3.1.1 DEVS Entities 37
3.1.2 Extensions 44
3.1.3 Support Classes 46

3.2 Application Classes 48
3.2.1 Plans and Tasks 49
3.2.2 Cutting Rooms 53
3.2.3 Equipment and Workstations 55
3.2.4 Resources 57

3.3 User Interface 58
3.3.1 Simulation Run Views 59
3.3.2 Models Views 60
3.3.3 Processors Views 61
3.3.4 Synchronization of Views and Simulation Runs 61

Ii

i
I

3.4 Debugging Support 62
3.4.1 Logging Messages 62
3.4.2 Debugging Views 64

3.5 Testing Support 64

3 A DEVS Class Specifications 66

B Application Class Specifications 90

3 C Test Class Specifications 134

I
I
I
I
I
I
I
I
I
I
i i

S
I

List of Figures

2.1 Polygon objects 7
2.2 A class definition for quadrilaterals. 8
2.3 An example of the use of inheritance. 10
2.4 An inheritance hierarchy for some polygon classes 11
2.5 A DEVS model for a simple processor 16
2.6 A simple coupled model for a queuing processor 18
2.7 Processor-model pairings for a queuing processor 19
2.8 A simple hierarchical model of a job generator, transducer, and

simpie processor. 22
2.9 Pseudo- rode for a job generator 23
2.10 Pseudo-co le for a transducer 24
2.11 Composi..tom tree and influence digraph for an experimental frame 25
2.12 Composit.',n tree and influence digraph for model/frame pair. . 25

3.1 The DEVS class hierarchy 37

3.2 CtIP Application classes 50
3.3 Cutting room model components and their connections54
3.4 An equipuient model 56
3.5 States of :-, equipment model 56
3.6 User interi'ace classes 59

HIl,

Chapter 1

Introduction

This document describes the results of our research into the application of
object-oriented technologies to the development of a simulation of cutting room
operations in an apparel plant. We gratefully acknowledge funding of this re-
search by the Defense Logistics Agency through Clemson Apparel Research,
Contract Number DLA900-87-D-0017, D.O. 0019. We also would like to thank
Jantzen in Seneca, SC for their interest in the project that helped us get support
from CAR, and Sundaresan Jayaramen at Georgia Institute of Technology for
help in understanding cutting room operations and how they fit into the larger
manufacturing process.

1.1 Purpose

The purpose of this research has been to investigate whether object-oriented
technologies can be useful in improving the efficiency of cutting room operations.
The cutting room is responsible for construction of the bundles of materials that
are assembled into garments in the sewing room. The decision as to the order in
which various cutting orders are processed and the way in which cutting room
resources-operators, tables, cutting machines, and so on-are allocated to the
cutting orders significantly affects the efficiency with which the cutting room
operates. When this project started, a typical apparel plant would be cutting
orders today that were not scheduled for sewing for another two or three weeks
from today. Such long lead times tend to reduce the impact of problems or
inefficiencies in the cutting room on other phases of production. In today's
competitive environment, practices such as these are too expensive. Ideally,
fabrics would arrive in the warehouse, almost immediately be dispatched to the
cutting room for processing, and the resulting bundles delivered to the sewing
room just when they are scheduled to be sewn.

With this "just in time" approach to manufacturing, the efficient operation

1

of the cutting room is more critical than it was previously. The impact of
problems in the cutting room is even more significant as companies such as
Jantzen move toward centralized cutting facilities-that is, cutting rooms that
cut for two or more sewing rooms, some of which might be quite remote. For
example, the cutting room at Jantzen in Seneca, SC cuts for the sewing room
at the same plant as well as plants in the Caribbean.

Cutting room management is currently an art. Cutting orders must be as-
signed to the various machines and operators in such a way that costs are held to
a minimum while bundles are delivered on time. For example, a schedule might
call for cutting black wool slacks, white cotton shirts, and orange sweatpants on
a given day. If the cutting room contains two tables with automatic spreaders
and two operators are available, then the manager must decide which orders
will be cut at each table and which operator will be assigned to each cut. If,
for example, only one of the spreading machines can handle the heavy rolls of
wool, then some of the decisions don't have to be made. Still, how the remain-
ing resources are assigned to the work significantly affects production efficiency.
The problem is compounded by the occasional need to process rush orders for
cutting pieces for sample garments.

Many cutting room managers just have a "knack" for assigning resources
well. He knows the operators, he knows the equipment, and he knows from
experience about how long each cut will take. Unfortunately, if a cutting room
manager leaves a plant, the problems of the cutting room can have a devastating
effect on production in a whole plant. In fact, this research was first suggested
to us as a result of a cutting room manager's leaving and throwing a whole
plant into disarray until he had been replaced with someone who could get the
cutting room running smoothly again.

Our approach in addressing this problem was to build a software tool to sup-
port a cutting room manager in making decisions with respect to the allocation
of cutting room resources to cut orders. Our idea was to build a software system
to simulate cutting room operAtions for a given set of cutting orders and work
assignments based on those orders. A cutting room manager constructs a plan
containing work assignments for the operators. A work assignment comprises a
task and the equipment and materials to be used in performing that task. Given
such a plan, the system simulates the operation of the cutting room, determin-
ing when each assignment is completed and when the plan is completed. The
plan can be revised and new simulations run in order to determine the effect of
these changes on the completion times.

We proposed to base the system on object technologies for two reasons.

1. We felt that the system would be most useful to a cutting room manager if
it had a graphical interface such that an animation of the simulation could
be displayed. Animation carries more impact than charts and tables. Our
goal was to have a manager be able to watch the effects of a plan on the
cutting room as operators move from workstation to workstation, as rolls

2

of fabric are processed into spreads, as spreads are cut into stacks, and as
stacks are packaged into bundles.

Most modern graphical user interfaces (GUI) are based on object technol-
ogy. Windows, widgets, icons, and geometric shapes are represented by
objects.

2. Every cutting room is different. The number and capabilities of the opera-
tors, the number and types of equipment, and the layout of the equipment
varies from cutting room to cutting room. This variety would generally
mean that our simulation system must be customized for each cutting
room. We saw objects as a good way of making the customization as
easy as possible. Since objects encapsulate the behavior of the real-world
entities they represent in software, then any object whose behavior cor-
responded to what the simulation expected could ',e "plugged into" the
system. For example, the addition of another spreading table could be
effected by creating an object to represent it, puttii.g that spreading table
object into the cutting room object, and just using it in assignments ý% ithin
a plan. The addition u, - new type of cutting ma.ine entails describing
the behavior of the machine, :"-uiring some programming. However, in-
heritance from the general class of cuttih,' machines or even from a specific
type of cutting machine that is "almost Fee" tle new type can be used to
define most of the behavior of the machine rrogramming is needed only
to describe any differences.1

1.2 Scope

This document describes the design and implementation of CIP, including
information about DEVS, the simulation methodology used. The information
in this document is complemented by information in the CIP User's Manual
and in the actual code for the system. Smalltalk-80 classes are not documented
here, except in cases where changes were made to predefined library classes.

1.3 Overview of the Document

The remainder of this document is structured as follows:

* Chapter 2 provides information about object-oriented programming and
DEVS, the methodology that we chose to use in building our simulation.

* Chapter 3 presents the software architecture of our system. The descrip-
tion comprises two main components:

1We could hope for a day when manufacturers of cutting room equipment provide class
descriptions of each of the products that they sell and those descriptions could be used directly
by the simulation.

1 3

1. The implementation of DEVS

2. The implementation of cutting room coinponents

* Appendix A provides class definitions for the DEVS component.

* Appendix B provides class definitions for the cutting room coUp11ncint.

A separate document, CUIP User's Manual. details the user iiitrfa(c, anid
how to start up and run the system.

I4

Chapter 2

Background

We present a brief description of object-oriented programming and of the DEVS
methodology on which the discrete event simulation aspect of our design is
based.

2.1 Object-Oriented Programming

In this section we will provide a brief description of object-oriented program-
ming. Software professionals do not agree as to exactly what constitutes object-
oriented software, but we adopt Wegner's(Weg87] definition, which requires that
a language support these three concepts to be considered object-oriented:

"* Objects

"* Classes

"* Inheritance

We will consider a software system to be object-orienied if it is designed
and implemented using these three concepts. An object-oriented program is a
software system whose components are objects. Computation is performed via
the creation of new objects and the communications between them.

2.1.1 Objects

An object is the basic component of the object-oriented paradigm. Each object
is characterized by its own set of attributes and by a set of operations that it can
perform. The values of attributes may change as a result of the app!ication of the
operations and, in general, only through the operations. Operations are referred
to as meihods (or member fun,:tions in C++) and are applied via the process
of message passing (or messaging). A message sent to an object specifies a

5

method name and a (possibly empty) list of arguments, each of which designates
sume object. A message received by an object causes code associated with the
method named in the message to be executed with its formal parameters bound
to corresponding values in the argument list. The processing of a message by
the receiving object might result in a state change-that is, a change to one
or morc of the receivi.ng object's attributcs-and/or the sending of a message
to itself or some other object. It is useful to think of message passing as being
roughly equivalent to function calls in the procedural paradigm. However, the
purpose of the method invoked as the result of a message is intended to modify
the internal state of the object to which it is attached rather than to modify its
arguments and return them. An object may even send itself a message. Some
languages provide special terminology to allow the object to refer to itself-for
example, self in Smalltalk-or let the object be the default if another object is
not explicitly referenced.

As an illustration, consider polygons drawn on a computer screen. Each
polygon is an object defined by an ordered collection of vertices. The ordlr
specifies how the points are connected. The vertices define the state of a polygon
object, both its shape and its location on the screen. Operations on a polygon
include "draw" (display it on the screen), "move" (erase it from its current
location and redraw it at some specified distance in the x and y directions),
and "contains?" (a check whether some specified point is inside the polygon).
Figure 2.1(a) shows three polygon objects on a computer screen and the points
that define them. Figure 2.1(b) shows how these polygons are represented as
objects.

Note that in describing polygon objects we have used other objects-namely,
a screen and points. A screen is a physical object that for our needs here
comprises an arrangement of picture elements (or pizels) that we can manipulate
to draw shapes. A screen object provides methods to turn pixels on and off, to
access the current state of a specified pixel (on or off), and to draw lines between
any two points, where the screen maps points to pixels. A point represents a
specific pixel according to some z and y coordinate system. A point object
provides methods to access its z and y components and perhaps to compute its
distance from another point.

There is no reason why objects must only represent physical objects. They
may be instances of any sort of conceptual entity. Processes in an operating
system, the level of illumination in a room, and the role of being a lawyer in a
particular trial are all examples of objects.

2.1.2 Classes

A class is a set of objects that share a common conceptual basis. The definition
of a class includes a set of data attributes plus the set of allowable operations
on that data. A class definition can be viewed as a template that is used for
the production of objects. All objects in a given class have matching attributes

6

(60.70)

(30.60) (4565 65.66)

(1 0 .5 0(
0 , 5

(20,30) (25) 0(20)

(3)5 0)

(a) Three polygons on a computer screen.

triangle quadrilateral, quadrilateral2

(10,50) (35,10) (50,10) (45,65) (50,45)
(30,60) (35,25) (50,25) (65,66) (60,70)
(20,30)

draw draw draw
move (Ax.Ay) move (Ax.Ay) move (Ax.Ay)
contains?(aPoint contains?(aPoint I contains?(aPoint)

(b) Three objects representing polygons.

Figure 2.1: Polygon objects.

7

Quadrilateral
point, point 3
point2 point 4

draw
move(AX, AY)

contains?(aPoint)

Figure 2.2: A class definition for quadrilaterals.

and operations. Each object is an instance of some class, and the state of an
object is contained in its instance variables.

For example, the two quadrilaterals in Figure 2.1-and every quadrilateral
object-have the same properties, so we can define a class Quadrilateral shown
in Figure 2.2 to specify these properties. Every object of class Quadrilateral has
the same set of instance variables and methods defined by the class. In this
sense, the class Quadrilateral provides a template for our representation of all
four-sided polygon objects, specifying both the variables in each instance of a
Quadrilateral and the set of methods that can be sent to any instance.

An instance creation operator must be provided in order to produce objects
from a class definition. A number of approaches have been taken by object-
oriented programming languages. C++, for example, defines an explicit new'
operation that creates a new instance of a specified class, incorporating a con-
structor concept by which instances are initialized implicitly when an object
of the class is created. Smalltalk uses class operators to create instances. The
method new is inherited from the Object class and serves as the basis for creating
instances of all other classes.

Programming languages take different approaches to instance destruction-
that is, the deletion of objects when they are no longer useful so memory can
be made available for other objects. C++ provides a delete operator that can
explicitly free up the space used by an object, thereby relying on the programmer
to manage objects in memory. C++ also allows each class to define a destructor
method that is called implicitly when an object is destroyed- Smalltalk, on the
other hand, does not provide a mechanism to destroy objects, but relies instead
on garbage collection.

Most languages that support the object-oriented paradigm provide data ab-
straction mechanisms. The mechanism for class definition provides a means for
designating the operations that users of the class will be able to access. This
set of operations is termed the class interface. The remainder of the class defi-
nition provides data definitions and auxiliary function definitions that comprise
the class implementation. This separation isolates the users of the class from

8

the effects of changes to the internals of a class.
The class interface is the set of operations that instances of the class can be

requested to perform. The simplified public interface for the Quadrilateral class.
Figure 2.2, shows the messages to which instances of the Quadrilateral class
can respond. Sending the message draw to an instance of class Quadrilateral
results in that instance executing its draw operator. The draw operator would
be designed to draw a quadrilateral having shape and location determined by
the point data inside the instance.

The class implementation often includes instances of other classes that pro-
vide services the new class requires. In the quadrilateral example, the four points
that specify a quadrilateral are point objects defined within the quadrilateral
object. These point objects are intended to be inaccessible from other objects.
If we decide that it is important for other objects to be able to access these
points, then we can add methods to the class interface to provide this access.
For example, we might want to designate one point-perhaps the point closest
to point (0,0) on the screen-as a reference point. We would define a method,
say referencePoint, to provide that value rather than allowing other objects to
compute it from the values of point,, point 2 , point3, and point 4 . A class imple-
mentation might also include some private methods-for use in implementing
the class, but not intended for use by any other object. For example, we might
want a private method that, when given a list of points, determines the point
that is closest to (0, 0).

A class is similar to-but also very different from-a record in Pascal or a
structure in C in the sense that it is an aggregation of data values. Classes
normally extend the usual semantics of records to provide varying levels of
visibility-that ;:., -ome components of the record may not be accessible by every
component that has visibility to the record type. Classes differ from records in
that they include definitions of operators with the same status as the data values
declared within the class. These art not equivalent to function pointers that are
defined independently of the class and stored in the class instances.

Virtually all object-oriented languages use objects as the representation of
the instances that make up an application. Some languages, such as Smalltalk,
also implement the classes themselves as objects. Since objects are the ma-
nipulatable entities in an object-oriented application, the implication is that
languages that implement classes as objects allow the manipulation of classes
by an application. This capability supports the flexibility needed in many ap-
plication areas such as artificial intelligence.

2.1.3 Inheritance

Inheriiance is a technique for using existing definitions as the basis for new
definitions. The definition of the new class is a combination of the data and
operation declarations from the existing class(es) and any declarations added
by the new class. The new class reuses the existing definitions without any need

*9

I

Polygon Quadrilateral

referencePoint referencePoit
vertices vrie

draw draw

move(AzX, AY) move(A x, Az1y)

contains?(aPoint) contains ?(aPoint)

(a) a class Polygon. (b) a subclass Quadrilateral
of class Polygon.

Figure 2.3: An example of the use of inheritance.

to modify the existing classes. It is less expensive to develop this way becauseI a portion of the class has already been implemented and tested. The existing
class is referred to as the parent class, the base class, or the superclass. The
new class is correspondingly referred to as the child class, the derived class, or
the subclass.

Consider the Quadrilateral class. If the class Polygon shown in Figure 2.3(a)
existed when class Quadrilateral was defined, then the definition of Quadrilateral
could have looked like Figure 2.3(b). The italicized items in Figure 2.3(b) have
been defined in class Polygon and added to the definition of class Quadrilateral
through the inheritance mechanism. Presumably these elements have already
been tested as part of class Polygon and may not need to be retested as rigorously
as newly written code.

Defining a new class using inheritance can be viewed as describing a new
set of objects that is a subset of the objects described by the existing class.
This new subset can be thought of as a specialization of the existing class. For
example, the Quadrilateral class in Figure 2.3 is a specialization of the Polygon.
A quadrilateral is a polygon restricted to four sides. We could further specialize
a quadrilateral into a rectangle which is a quadrilateral having special proper-
ties. The interface for the Quadrilateral class might be identical to that of the
Polygon class, and the interface for a Rectangle might be the same as that of the
Quadrilateral.

The new class can also be viewed as having an interface that is an expan-
sion of the interface of the existing class. For example, deriving a four-wheel
drive vehicle class from an existing vehicle class would not only specialize the
definition to a subset of vehicles, but probably also introduce new capabilities
in the new class interface. Continuing with our example, we might wish to add
more operations for a rectangle-for example, a method that would answer the
largest ellipse that can be enscribed in that instance.

10

I
I

Polygon

Ue Qudnilateal

I RecungI7.

3 Figure 2.4: An inheritance hierarchy for some polygon classes.

How much of the existing definition is available to be added to the new defini-
tion varies from one language to another. Many languages give the implementorU control over which attributes are actually inherited and how they are inherited.
Typically, the system developer may choose to either inherit only the interface
and not the representation or to inherit both the interface and the representa-
tion. In our approach to object-oriented design, we inherit all the attributes of
the existing class in the new class definition, despite what facilities our imple-
mentation language might provide to hide inherited attributes. Our approach
leads to the development of inheritance structures that are conceptually rational

and understandable.

i 2.1.4 Polymorphism and Dynamic Binding

Objects, classes, and inheritance characterize the object-oriented paradigm, but
other techniques are used in conjunction with them to provide additional power.
Two of these are polymorphism and dynamic binding.

A language supports polymorphism if the same name or symbol can be used
in different contexts. In an object-oriented programming language, more than
one class may use the same method names, and hence the various instances of
these classes can respond to the same messages, though each in its own way. The
determination of which method to dispatch when a message is received by an

object is determined through dynamic binding-that is, the method dispatched
is determined by the class of the receiving object at run time. Consider, for ex-
ample, the class hierarchy shown in Figure 2.4. By polymorphism, any instance
of these classes can reply to a message contains?(p), but the way in which the3 answer is computed depends on the kind of polygon. If the message is sent to

- 11

I
i

P, then the method dispatched to compute the answer depends on whether P is
"a triangle, a quadrilateral, or a rectangle. In this way, the action taken depends
on the class of P at run time.

2.1.5 Benefits

We briefly examine some of the reasons for using object-oriented design and
implementation techniques: Object-oriented programming

3 Promotes reusability. Object-oriented techniques yield structures that are
more readily reused than other design techniques. Reuse comes in many
forms:

1. There is reuse by using an instance. For example, an application
might use many instances of class Quadrilateral.

2. There is reuse by using an instance in a definition. For example, the
Quadrilateral uses instances of class Point.

3. There is reuse by evolution. For example, class Quadrilateral is used
to define class Rectangle.

The support for data abstraction in object-oriented methods promotes
these types of reuse. Designers view object-oriented techniques from dif-
ferent perspectives. Those currently using languages such as C will see the
additional potential for reuse provided by classes. Those using languages
such as Ada or Modula-2 will see packages and modules as providing the
first two types of reuse. What they will not have seen is the third type of
reuse.

Facilitates maintenance. The information-hiding supported by most object-
oriented programming languages facilitates maintenance. The interface of
a class defines the set of operations on the data of an instance of that class.
If a change is made to the representation of data defined in the class, then

those operations defined in the class that interact with the changed data
need to be modified. There is no need for users to modify their references
to instances of the class unless the signature of one of the operations has
been changed. The impact of this and many other maintenance activities
is localized.

For example, consider an implementation of the class Rectangle in which
we wish to use two points to define it instead of four points. [Note that if
we require a rectangle to be aligned with the x and y axes, then we can
define it in terms of its upper-left vertex and its lower-right vertex. Many
microcomputer systems provide facilities to draw rectangles in terms of
these two points.] The methods draw, move, contains?, and referencePoint
would have to be reimplemented to determine the other two points if they

12

are needed. These changes would be localized to the code of the methods
of the Rectangle class.

Exploits commonality. Object-oriented techniques exploit commonality
in two ways. First, there is commonality across applications. Software
development firms tend to develop applications that address a common
domain such as communications or graphics. By developing units that
are easily reused, object-oriented design exploits the commonality within
a company's applications. Second, there is commonality across system
components. For example, a graphics system defines numerous shapes
such as lines, triangles, circles, and rectangles. These components are
different shapes, but they have many common attributes. Object-oriented
design develops a structure that factors out these common elements into
a class, which can then be the basis for defining each of the individual
shape classes.

Reduces complexity. This is where the advertisement starts because we
have little more than anecdotal evidence to support this claim. A recent
paper by Rosson and Gold[RG89] does provide some evidence in support of
the claim. Existing procedural techniques require that the designer have
a solution in mind before beginning the design process This requires
the designer to be an expert problem solver because the design technique
only supports the computerization of a solution rather than the problem-
solving process. This further implies that the designer cannot begin the
system design until a complete problem solution is known. With today's
complex systems, this is often a severe limitation.

Object-oriented techniques begin the development process in the problem
domain rather than in the solution domain. This relieves the designer
from developing a complete solution before beginning any design work.
Thus, the designer is able to handle more complex problems because of
the support provided by the design techniques.

We have used these techniques because we wanted an effective solution. We
proposed to use object-oriented techniques for the design and implementation
of CIP for a number of reasons:

o The use of objects in design leads to an architecture that is characterized
by discrete structures that communicate with each other. The encapsu-
lation of functionality means that otherwise lengthy and complex flows

of control are decomposed into shorter, simpler segments hidden within
the individual objects. Consider the simulation component of CUIP . The
functionality needed to simulate the passage of simulated time, to post
the time of next event for a given object, and even to display an object
must be provided for each simulation object. In different scenarios, users
may have the power to create an almost unlimited number of cutting room

513

resources to use in a simulation run. Having each instance of a resource
contain the functionality that it needs results in an architecture that dis-
tributes responsibility. Such a system easily handles multiple occurrences
of complex resource entities.

" The use of inheritance to evolve new definitions from existing ones sup-
ports the solution of complex problems. Areas in which solutions evolve
over time rather than being obvious at the outset require many changes as

an application is developed. Developing subclasses from existing classes
allows the designer to modify the behavior of classes incrementally as
new information about a solution becomes available. These changes can
be made without disturbing existing software components, which depend
on the classes that are to be modified. We want to be able to add new
equipment to a cutting room as well as to be able to add new kinds of
equipment.

" The encapsulation of representakion characteristic of objects supports the
prototyping of systems. Once the module interfaces are developed, the
underlying representations of classes can be modified without impacting
the modules that use the services of the changing module. Quickly de-
veloping the behavior of a simulation object can be followed by detailed
implementation that provides specialized responses. Strictly speaking, this
is a characteristic of data abstraction that is an integral part of object-
orientation. Our goal has been to develop a prototype that can be refined
later for a specific installation. We have been less concerned about finding

actual values for things such as operator efficiency and spread rates for
equipment, and more concerned about identifying how all the objects need
to interface in order to produce a meaningful simulation run.

2.2 DEVS

In this section we describe how DEVS works. [For a more formal treatment and
further details, see Zeigler's book.]

The DEVS methodology is based on the definition of models and on the
interconnection of these models to construct larger models which may, in turn,
be connected to other models. This layered construction provides a hierarchy
of models. Each model is modular in the sense that it can be used in a variety
of simulations.

Two main kinds of entities exist in DEVS-Scheme: models and processors.
Models contain information and operations about the domain of interest. Pro-
cessors carry out the simulation of DEVS models.

In this section we describe models, processors, and simulation in DEVS.

14

2.2.1 Models

Zeigler describes a DEVS model as an object containing the following informa-
tion [Zei90, pp. 48-49]:

"* a set of input ports through which external events are received

a a set of output ports through which external events are sent

"* the set of state variables and parameters: two state variables are usually
present-phase and sigma (in the absence of external events the sýstem
stays in the current phase for the time given by sigma)

" the time advance function which controls the timing of internal transitions-
when the sigma state variable is present, this function just returns the
value of sigma.

" the internal transition function which specifies to which next state the

system will transit after the time given by the time advance function has
elapsed

" the external transition function which specifies how the system changes
state when an input is received-the effect is to place the system iit a new
phase and sigma thus scheduling it for a next internal transition; lhe next

state is computed on the basis of the present state, the input po-,! and
value of the external event, and the time that has elapsed in the cui rent
state.

"* the output function which generates an external output just before, anI internal transition takes place.

DEVS models comprise two categories: atomic models and coupled ITw'del.

Atomic Models

Atomic models are those models at the lowest level of the hierarchy. The behav-
ior of such a model is determined by the input even types it recognizes, its state
variables and parameters, its time advance function, its internal transition func-
tion, its external transition function, and its output function. We characterize
an atomic model by means of a simple example.

Figure 2.5 shows a graphical representation of a simple processor. The pro-
cessor being modeled is provided with jobs, each requiring a fixed amount of
processing time. This processor does not queue up jobs as they arrive. If a job
arrives while the processor is busy with a job, then the arriving job is ignored.

The model behaves in accordance with the description provided in the right

part of the figure- When the model receives an input z on port in and the
processor is idle (state passive), then the processor starts to work on the job

15

SSimple Processor -

i.,n sigma o pae 1 u...t

II

State variables:
sigma = 0
phase = passive
jobID = None

Parameters:
processingTime = 5

External transition function:
if phase is passive then

joblD - input job ID
hold in phase busy for processingTime

else - -phase is busy
continue

Internal transition function:
case phase is

busy: passive
passive: (Does not arise)

Output function:
send joblD to port out

Figure 2.5: A DEVS model for a simple processor.

16

whose ID is specified in x. The processing time for each job is fixed at five time
units (parameter processing Time). After processing time has passed, the identi-
fication of the completed job is emitted on output port out as determined by the
output function. If a job arrives on the input port while the processor is already
busy (as signified by phase busy), the arriving job is ignored as determined by

Sthe external transition function's handling of an input when the processor is in
the busy phase.

An atomic model can have any number of input and output ports. The
external input function must specify an action for an arrival on each of theI input ports. Usually, the processing associated with an arrival on any given
port is determined by the current state of the model-as determined by phast
and possibly other state variables-and/or by the object arriving on the port.

With respect to the management of state and time, four actions are corn-
-- monly taken:

1. hold-in phase for duration. The model stays in the phase indicated for
the duration of time indicated. Thus, the next internal transition occurs
at the current time plus the duration indicated. However, the arrival of
an external input might preempt that next internal transition.

S2. passivate in phase. The model enters the phase indicated for an infinite
amount of time, equivalent to hold-in phase for oo. Thus, no next internal
transition is scheduled to occur and the model will react only to external
inputs.

3. passivate. The model enters a passive phase for an infinite amount of time,
equivalent to passivate in passive.

4. continue. The model continues in the same phase, reducing the amount
of time to the next internal transition by the amount of (simulated) time
passed in this state so far.

It is important to realize that an atomic model has no conception of a global
simulation time. Time relates only to the state transitions that a model must
undergo. In the simple processor example, the model is either busy or passive
and oblivious to the current simulation time. The only times of significance are
durations-the elapsed times at which state transitions occur.

* Coupled Models

A coupled model comprises a set of components-each an atomic or coupled
model- with specified interconnections A coupled model contains the following
information:

9 the set of component models

* the set of input ports through which external events are received

17

ý Queuing Processor J'

Queue u Simple Processor

senoU2

Figure 2.6: A simple coupled modei for a queuing pro ,-.s.sor Fhe lue:', S

to hold jobs waiting for the simple processor

* the set of output ports through which external events are .erit

* for each component. its znfluenceefs-the other components of the :no, .e

that affect it

* the coupling specification:

- the external input coupling that specifies how input ports f
coupled model are connected to input ports of the componerim

- the external output coupling that specfies how ,utp•it p

component models are connected to the output ports z,4 " :iv
model

- the internal coupling that specifies how the output ports of -ompo-

nents are connected to the input ports of components

Note that an output port of a component model ran be -onneted to
any number of the input ports of component models as well as ýo any
number of output ports of the coupled model. Similarly, an input port
of the coupled model can be connected to any number of input p,,rts :i
component models.

• the select function that specifies the order in which two or more compo-
nents that are ready for a state transition at the same time will undergo
the transition.

Consider the coupled model shown in figure 2.6. This model is for what weell
call a "queuing processor" because it queues jobs until they ran he procssedi.
It comprises two models: one simple processor model and one queue model. A

'13

queuing processor has one input port-a- and one output port-out Input

jobs are routed to the queue component model which buffers jobs arriving on its
in port and sends jobs one at a time to the processor in response to an arrival
of anything on its send port. The output of the processor is routed both to the
output of the queuing processor and to the send input port of the queue.

Note that the queue model could be either atomic or coupled. The behavior
of either type of model is indistinguishable, illustrating the modularity of DEVS.

2.2.2 Processors

Within a simulation run, each DEVS model is controlled by a processor that
monitors the passage of simulated time and activates functions in the model as
appropriate. There is a one-to-one mapping of processors to models. The model
attached to a processor is referred to as the processor's devsComponent. Each
atomic model is controlled by a simulator. Each coupled model is controlled
by a coordinator. A special processor, a root coordinator, manages the overall
simulation and is linked to the coordinator of the outermost coupled model,
Processors are linked in a tree that reflects model hierarchy. Leaf nodes are
simulators while internal nodes are coordinators except for at the root. The
configuration for the processor example is shown in figure 2.7. Processor objects
are shown as circles, models as rectangles.

Processors send and receive four kinds of messages to effect simulation- A
processor takes action on its attached model based on the type and content of
the messages it receives. Simulation begins when the root coordinator sends the
first message to indicate the start of simulated time. The message is routed by
processors through the hierarchy to a model with an appropriate state change.
(Models are prioritized so that if more than one has a state change imminent,

19

then the next one to change is selected deterministically.) A state change can
result in outputs that affect other models. Messages are routed by processors
as appropriate based on output and input port connectiins between models.
Eventually, once all state changes at the current time have settled out. the root
coordinator receives a message indicating that simulation time can advance and
a cycle of messages is begun anew. Simulation terminates after some preset
duration or when no more transitions are scheduled for any of the models in the
simulation.

The four message types used in DEVS are:

* -indicates that the next internal event is to be carried out within the scope
of the processor receiving the message.

x -signifies the arrival of an external input to a processor's model and bears
the global model time of that e':ent. The input value and port of arrival
are indicated in the message content.

y -carries the output of a model in its content and the global model time at
which output occurred.

done -indicates that a state transition has been carried out and bears the
global time of the next event.

A message comprises three main components:

source -designating the originator of the message.

time -a simulation time stamp or a duration, depending on the use.

content -comprising a port designation and a value, determined by the model
output function. This component is not meaningful for done and * mes-
sages.

Simulators

Simulators handle atomic models in a simulation. A simulator S;M for atomic
model M tracks the global time at which the last event occurred in ." and the
global time at which the next event will occur, based on the duration of time
provided by M's time advance function.

A simulator receives * and z messages and sends y and done messages in
reply. A simulator S:M having devsComponent M acts as follows in response to
z and * messages:

9 Upon receipt of an z message, S:M activates the external transition func-
tion of M and then respond by sending a done message to its parent proces-
sor. The done message indicates that the transition has been performed
and carries with it the simulation time of M's next internal transition.

This time is computed by adding the value of M's time advance function
to the time carried in the z message.

20

I
I

9 Upon receipt of a * message, S:M activates M's internal transition func-
tion and responds by sending a y message to its parent, followed by a
done message. The y message content contains the output port and value
computed by M's output function. The done message indicates that the
transition has been carried out and indicates the simulation time of M's
next internal transition.

Coordinators

Coordinators handle coupled models in a simulation. A coordinator C:M for

coupled model M tracks the global time at which the last event occurred in AM
and the global time at which the next event will occur. A coordinator also main-
tains a list of the processors for the component models of its devsComponent,
sorted according to increasing time until the next transition. The processor at
the head of this list is the processor's imminent child. If two or more models
have matching times, then a selection function is used to determine the order.

I Ordinarily this function consults a prioritized list of the models.
A simulator receives and sends all four kinds of messages:

"" Upon receipt of an x message, C:M transmits this message to each of M'sI component models that have input ports connected to the port indicated
in the message.

"* Upon receipt of a * message, C:M transmits a * message to its imminent
-- child.

"" When a coordinator receives a y message from its imminent child, it checks
the coupling in the model to see whether the output port in the message
is connected to an output port of the coupled model. If so, the message
is transmitted to its parent. Next, if the output port indicated in the
message is connected to an input port of any other models within the
coupled model, then the output value is transmitted to each child in an z
message directed to the appropriate port.

" After a coordinator receives a done for each of the x messages it has sent
to children and the y messages it has sent to parents, then it determines
a new imminent child from among its children and sends the time for the
imminent child's next event in a done message to its parent.

Root Coordinators

A root coordinator controls a simulation run. Unlike the other two kinds of pro-
cessors, a root coordinator has no model attached, but a coordinator attached

I
* 21

SEF-PIP
I&

-0out in solved Transducer out result out

II

o s op

out

Figure 2.8: A simple hierarchical model of a job generator, transducer, and
simple processor.

instead.' A root coordinator maintains the current global simulation time and
starts the simulation by sending a * message containing the current simulation
time to the attached coordinator. When the coordinator responds with a done
message indicating the time of the next event, the root coordinator updates the
simulation clock and starts the next cycle with another * message. The coordi-
nator might send a y message to a root coordinator. This message contains the
output of the model. A root coordinator just ignores such messages by default.

2.2.3 Simulation

We illustrate the operation of DEVS on a simple model taken from [Zei90] and
shown in Figure 2.8. At the top level, this model comprises a processor model

'Zeigler describes only a cornection to a coordinator. These seems to be no reason why
a simulator cannot be attached, though perhaps atomic models are just not interesting by
themselves.

22

ATOMIC MODEL: GENR

state variables: sigma = infinity
phase = active

parameters: interarrival-time = 10

external transition function:
case input-port

stop: passive
else: error

internal transition function:
case phase

active: hold-in active interarrival-time
passive: (does not arise)

output function:
case phase

active: serd a random job name to port out
passive: (does not arise)

Figure 2.9: Pseudo-code for a job generator.

and an experimental frame model. The latter is a digraph model comprising
two other models, a job generator and a transducer. The job generator creates
a job every ten seconds until signaled to stop. The transducer collects statistics
about jobs-average turnaround time and throughput-by monitoring the jobs
generated and processed. The transducer model includes a clock among its state
variables to track global simulation time. Descriptions of the models are given

in Figures 2.9 through 2.12. For a more detailed description these models, see
Chapter 5 of [Zei90].

The sequence of messages to effect simulation is given below. This sequence
is quite lengthy even though a significant part of it has been deleted. We present
this level of detail in order to describe the operation of DEVS. This level is not
provided in [Zei90], and we worked for a long time to collect the information
necessary to determine how messages are generated and processed. While the
sequence below is difficult to follow because of its length, it does serve as a
reference for determining the correct operation of a simulation.

The levels of indentation in the sequence roughly match the levels in the
hierarchy. One can easily see how messages propagate down the levels, back up,
down again, and finally back up. Actions shown in italics correspond to actions
on an atomic model attached to the simulator. 2

2This sequence wan generated by ClIP during a run. We have included a provision for
producing LaTeX commands which can be formatted to decipher the operation of the system

-23

Ii
I

I

ATOMIC MODEL: TRANSD

state variables: sigma = observation-interval
phase = active
arrived-list = 0
solved-list = 0
clock = ()
total-ta = (

mmmparameters: interarrival- time =10

external transition function:

advance local clock to agree with global clock;
case input-port

ariv: append job to arrived-list
solved: find job arrival time;

total-ta = clock - arrival-time;

put the job to solved-list
continue

I internal transition function:
case phase

active: passive - - end of observation interval

output function:
case phase

active: average-turnaround-time =
total-ta / solved-job-number;

thruput = solved-job-number / clock
else: no output

3 Figure 2.10: Pseudo-code for a transducer.

2

"3 24

i

I
I
I

DIGRAPH MODEL: EF

composition tree: root: EF
leaves: GENR, TRANSD

external input coupling: external output coupling:
EF.in -- TRANSD.solved GENR.out - EF.out

TRANSD.out - EF.result

influence digraph: internal coupling:
GENR - TRANSD GENR.out - TRANSD.ariv
TRANSD -- GENR TRANSD.out - GENR.stop

I Figure 2.11: Composition tree and influence digraph for an experimental frame.

I
I

B DIGRAPH MODEL: EF-P

composition tree: root: EF-P
leaves: EF, P

external input coupling: external output coupling:
none EF.result -- EF-P.out

influence digraph: internal coupling:
P -- EF Pout --+ EF.in
EF -* P EF.out - P.in3priority list: (P E•i)

3 Figure 2.12: Composition tree and influence digraph for model/frame pair.

25

RC EF-P S:P EF S:GENR S:TRANSD

restartAt: Dec 1, 00:00
restarting P at: Dec 1, 00:00

restartAt: Dec 1, 00:00
send: Done Infinity

recv: Donel Infinity
restarting EF at: Dec 1, 00:00

restartAt: De 1, 00:00
restarting GENR at: De0 0, 00:00

restartAt: Dec 1, 00:00
send: Dos ' Dec 1, 00:00

recv: Don e Dec 1, 00:001

restarting TRANSD at: Dec 1, 00:00
restartAt: Dec 1, 00:00

send: Done Dec 1, 01:40

recv: Done' Dec 1, 01:40

send: Done Dec 1, 00:00

recv: Done Dec 1, 00:00

send: Done -Dec 1, 00:00

Time: Dec 1, 00:00
send: * Dec 1, 00:00

recv: *1 Dec 1, 00:00

send: *Dec 1, 00:00

recv: Dec 1, 00:00

send: Dec 1, 00:00

recv: 'I Dec 1, 00:00
output?0 -- 'Job 0'
send: I Dec 1, 00:00: 'Job 0']

at the lowest level. Obviously, the amount of messaging that occurs in a simulation run is very
large and being able to format that output meaningfully is of considerable help in debugging.
See Section 3.4 for details on how to produce this output.

26

RC EF-P S:P EF S:GENR S:TRANSD

recv: Yj Dec 1, 00:00: 'Job 0'l
send: =De1,0:00: 'Job 0'l

recv: 'I Dec 1, 00:00: 'Job 0'l
ext trans fn(O minutes, 'Job 0')
ta?0 - 100 minutes

send: DneI Dec 1, 01:401
recv: Doel[Dec 1, 0-1.470
send: vI Dec 1, 00:00: 'Jo~b0'I

recv: Y' Dec 1, 00:00: 'Job 0'

send: 'I Dec 1, 00:00: 'Job 0'l
recv: 'I Dec 1, 00:00: 'o '

ext trans fn(O minutes, 'Job 0')
ta?(-- 5 minutes

send: Done Dec 1, 00:051

recv: Done Dec 1, 00:051
send: DoI Dec 1, 00:05J

send: Done[Dec 1, 01:40o
ant trans fno - #active
ta?() -- 10 minutes

send: D°"elDec 1, 00:101
recv: ne{ Dec 1, 00:10
send: Done Dec 1, 00:101

recv: Done Dec 1, 00:101
send: Donel Dec 1, 00:05

recv: DoneoDec 1, 00:051

Time: Dec 1, 00:05
send: *1 Dec 1, 00:051recv: 'IDc1, 00:05

"s[end 1,0:051
sed recv~e: • Dec 1,750:051

output?() -- 'Job 0'
send: Y[Dec 1, 00:05: 'Job 0'

27

RC EF-P S:P EF S:GENR S:TRANSD

recv: Y' Dec 1, 00:05. 'Job 0'
send: f[ec 1, 00-05: 'Job 0'l

rese:nd Dec 1, 00:05: 'Job 0'

send: xIDec 1, 00:05: 'Job 0'ý
reeD: 'I Dec 1, 00ý05: ".Job 0'l

exi trans fn(5 minutes, 'Job 0')
ta?() -- 95 minutes

send: DoneFDec 1,01.40

recv: Done 1,0:40

send: DoneDc , 00:10

recv: Do"' Dec 1, 00:10

send: Done Dec 1, 00::10
int trans fn() --* #busy

ta?0 - forever

send: Donennt
recv: Do.ý7ne•l

send: Denc l Dec 1, 00:10

reeD: O-n`FDec 1, 00:10

Time: Dec 1, 00:10
send: Dec 1, 00:10

recv: cvDDec 1, 00:10

ssend: * Dec 1, 00:10

re ec: "1 Dec 1, 00:10

send: *1 Dec 1, 00: 10

recv: *1 Dec 1, 00: 10
output? .. - 'Job 1'

send: Z De 1, 00:10: 'Job 1'
recv: Yj Dec 1, 00:10: 'Job 1'

send: =1Dec 1, 00: 10: 'Job 1'I

recv: 'I[Dec 1, 00:10: 'Job J

ext trans fn(5 minutes, 'Job 1')

28

RC EF-P S:P EF S:GENR S:TRANSD

ta?(-- 90 minutes

send: Done Dec 1, 01:401
ree:,: D.-'l Dec 1, 01:401

send: I[,Dec 1, 00: 10: 'Jo '

recv: I Dec 1, 00:10: 'Job 1'

send: 1 Dec 1, 00:10: 'Job I'[
recv: '[Dec 1, 00:10: ,'Job 1,',

ext trans fn(5 minutes, 'Job P')
ta?O - 5 minutes

send: Done Dec 1, 00:151
recv: Done Dec 1, 00:15

send: Done. Dec 1, 00:15

send: Done[Djec 1,01: 470

int trans fn -- #activeIar0 - 10 minutes
send: Donel Dec 1, 00:201

recv: Done Dec 1, 00:20

send: Don"I Dec 1, 00:20

recv: Done Dec 1, 00:20

send: Done°Dec 1, 00:15ý

recv: D�oe Dec 1, 00:151

Time: Dec 1, 00:15

send: *1 Dec 1, 00:151
recv: "1 Dec 1, 00: 15t

send: 'I Dec 1, 00:1i5f

output?() -. 'Job 1'
send: Yfl~e¢ 1, 00:15:, 'Job 1',

recv: I Dec 1, 00:15: 'Job VI

send: - Dec 1, 00:15: 'Job 11
recv: Dec 1, 00: 15. 'Job V1I

send: •Dec 1, 00:15: 'Job I'l

29

RC EF-P S'P EF S:GENR S:TRANSD

recv: Z Dec 1, 00:15: 'Jlob 1'7
ext trans fn(5 minutes, 'Job Ir')
ta?() - 85 minutes

send: Done Dec 1, 01:401

recv: Done 1, 01:40

send: DIeI Dec 1, 00:20
recv: Done Dec 1, 00:20

send: Done Dec 1, 00:20]
int trans fn() - #busy
ta?(-- forever

send: Done I

recv: Done Infinity
send: Done Dec 1, 00:20

recv: Doo.eDec 1, 00:20

Time: Dec 1, 00:20

A similar pattern of messages intervenes

Time: Dec 1, 01:35
send: " Dec 1, 01:35 1

send: -1 Dec 1 , 0 1:35 :
recv: *1 Dec 1, 01:35:
ouspue0D -,.0 'Job 9'

send: I Dec 1, 01:35: 'Job 9'

resv: e: Dec 1, 01:35: 'Job 9''
send: •1Dec 1, 01:35: 'Job 9]'

recv: Dec 1, 01:35: 'Job 9'1
send: •[Dec 1, 0 1:35; 'Job 9

recv: I Dec 1, 01:35: 'Job 9'1

ext trans fn(5 minutes, 'Job 9')
ta?() - 5 minutes

30

RC EF-P S:P EF S:GENR S:TRANSD

send: Do' Dec 1, 01:40o

recv: o- 'f Dec 1,70140
send: Do"I Dec 1, 01:401

recv: Do°ne Dec 1, 01:40

send: Dn"I Dec 1, 01:40
mt trans fnO - #busy
ta?(- forever

send: Done Infinity

recv: Done Infinity

send: Done Dec 1, 01:40

recv: Done Dec 1, 01:401

Time: Dec 1, 01:40
send: Dec 1, 01:40

recv: Dec 1, 01:40

send: [Dec 1, 01:40

recv: ' Dec 1, 01:40

send: * Dec 1, 01:40

recv: *" Dec 1, 01:40
outpulO -* 'Job 10'

recv: Y Dec 1, 01:40: 'Job 10'I

send: 'I Dec 1, 01:40: 'Job 10'

ext trans fn(5 minutes, 'Job 10')
ta?0 - 0 minutes
send: Do. [Dec 1, 01: 4 0

rev: ' Dec 1, 01:40:ob 10'
send: I Dec 1, 01:40: 'Job 10'

reev: Yj Dec 1, 01:40: 'Job I0'l
send: •lDec 1, 01:40: 'Job 10'I

rec: ZDe¢1, 01:40: 'Job 1'

ext trans fn(5 minutes, 'Job 10')

31

RC EF-P S:P EF S:GENR S:TRANSD

tao() -5 minutes

send: Don` Dec 1, 01:4A5

recv: Do11e1,01:-t57

send: D'o p Dec 1, 01:45.
send: D..e Do c , 014.j

I mt trans fnO -#active

tad0 - 10 minutes

send: D'Jne! DcC I 01 50i

recv: Done Dec 1, ois5O

send: Done Dec 1. 01.40

recv, DneDec o1 1:40
Ssend: 1O9 1 Dec 1, 01:40

recv: Done Dec 1, 01:401

Time: Dec 1, 01:40
send: "1 Dec 1, 01:401

recv: Dec 1, 01:40

send: Dec 1, 01:40
rec v: '] Dec 1, 0 1:10!

send: Dec 1,001:40

recv' Dec 1, 01:40

output(-- .5 minutis

send: Yj Dec 1, 01 10:5 riu5hs

recv: " Dec 1. 01:40: 5 minutes'

send: z]Dec 1, 01:40: 5 minutes ,

recv: I Dec 1, 01:40: 5 minutesi,
ezt trans fn(O minutes. 5 minutes)

ta?)0 - forever
send: Done•

recv: lnel. Infinity[

send: Y[Dec 1, 01:40: 5 minutesl

recv: Y Dec 1, 01:40: 5 minutes

send: Y[Dec 1, 01:40: 5 minutes

32

RC EF-P S:P EF S:GENR S:TRANSD

recv: Dec 1, 01:,1:0:5 minutes

send: Do 'I Dec 1, 01:451

send: Done Jnfinity
int trans fnO - #acztve
ta.(0 - forever
send: DoneC Infinity

r•cv: Doe

send: Done[ninity]

recv: Done Infinty

send: Do•'l Dec 1, 01:45

recv: Do"' Dec 1, 01:451

Time: Dec 1, 01:45

send: Dec 1, 01:45
recv: Dec 1, 01:451

send: De c 1, 0 1:451

reev: e 1Dec , 01:45J
outputt.'?) -t 'Job 10'

send: YeDec 1, 01:4d: 'Job n0'f

reev: Dec 1, 01:45: 'Job 10'

send: Dec n, 01:45: Dob 10'

recv: r Dec 1, 01:45: 'Job 10'

send: "sDec 1, 01:45: 'Job 171Y
recv: I Dec 1, 01:45: 'Job 101J

ext trans fn)5 minutes, 'Job 10
ta)?f -- foreve

send: Done Infinity

;nt trans fn0 -.* #busy
ta?() -- forever
send: Done•l-ity

33

I
U rec �': xf�E�OO:OO:�Jobo

I
I
I
I
I
I
I
I
I
I
I
I
U
* 34

I
I
I

Chapter 3

System Design

We chose to use DEVS [Zei9O] as the methodology for constructing the simu-
lation components of our system. The DEVS methodology is modular and hi-
erarchical, supporting the development of independent models that are linked-
An implementation in Scheme, an object-oriented programming language based
on Lisp, is described in [Zei90] and was to be the basis for our implementation.

DEVS-Scheme was also attractive because it was developed with running on
multicomputers in mind[Zei9O, p. 62]:

... The implementation in DEVS-Scheme has the characteristics
of a "virtual multiprocessor" in that each of the processor objects
could in principle be assigned to a different physical computer. This
renders modelling in DEVS-Scheme a natural basis for implementing
discrete event models on multi-computer architectures.

We were interested in being able to run our cutting room simulations in a
multiprocessor environment because we expected them to take quite a while
to complete when run on a desktop computer. Part of our project was to
examine ways to distribute the simulation. Research on distributing DEVS-
Scheme would simplify that task for us. 1

The system comprises three main categories of classes:

5 DEVS classes

* application classes

* user interface classes

' Because of our significant underestimation of the programming effort required for our
simulation, we did not get a chance to investigate distribution of simulator components. WVe
note that execution time on a Macintosh (M68040 processor) running Objectworks\Smalltalk
(Version 4.1), the machine and programming language environment used for development, is
acceptable for at least the small test simulations we have run.

I 35

A description of the main classes in each of these categories is provided in the
next three sections. The remaining sections in this chapter provide descriptions
of support for debugging and testing.

3.1 DEVS Implementation in Smalltalk-80

Our implementation of DEVS in Smalltalk-80 parallels Zeigler's implementation
in Scheme, but differs in some aspects arising primarily from a different perspec-
tive on the application of object-oriented technologies. Zeigler's im plementation
was influenced by the view of objects presented by Scheme. His approach is to

define a class, then alter the contents of that class as appropriate for a part icu-
lar model. For example, the simple processor model we discussed earlier would
be an instance of class AtomicModel whose list of state variables is augmented
by jobiD and processingTime to represent the processor's state. Our approach
uses subclassing: a class SimpleProcessor is a subclass of a class AtomicModels,
inheriting the state variables and methods required to be an atomic model, then
adding in new instance variables and methods to simulate the state and behav-
iors of a simple processor. Our approach is cleaner from a -programming v;-w,
but a little further removed, perhaps, from the DEVS formalism. For example,
time advance is no longer a function (object), but is a method provided by a
model object.

The implementation that we describe has evolved from an initial implemen-
tation that was faithful to the Scheme implementation. As we began to figure
out how a DEVS simulation worked, we began to refine our implementation so
that it became easier to create models. Our goal is to make the addition of new
classes of objects that represent cutting room resources as straightforward as
possible. As work progressed, we revised Zeigler's design to suit our needs, Over
the term of the project, we reimplemented significant portions of the classes we
describe at least two times. Our implementation could probably use one more
good review to flush out the remnants of the original design. We didn't want
to take the time away from using these classes to implement simulations, so we
never gave ourselves an opportunity for another review.

We have restricted our implementation to include only those classes that
we need for CUIP simulations-namely, the only coupled models we use are
digraph models. We have used the same class hierarchy and have defined the
same set of support classes. However, we have extended the Scheme irnplemen-
tation with respect to how we handle time and with respect to how we handle
instance variaoles. We have also added a special kind of digraph model that
supports dynamic change to the composition tree. In this section we describe
our implementation of DEVS in Smalltalk-80. Class specifications for all the
classes described here may be found in Appendix A.

Detailed descriptions and specifications of DEVS and application classes
described in the remainder of this chapter are provided in Appendices A and B.

36

Entities ('name' 'parent')
Models ('processor' 'inport' 'outport')

AtomicModel ('x' 'y' 'sigma' 'phase' 'e')
CoupledModels ('receivers' 'influencees' 'priorityList')

DigraphModels ('compositionTree' 'influenceDigraph' 'selectFn')
DynamicOigraphModels 0

Processors ('devsComponent' 'childProcessors' 'timeOfLastEvent' 'timeOfNextEvent')
Coordinator ('starChild' 'waitList' 'tNChildren')

DynamicCoordinator 0
RootCoordinator ('clock' 'child' 'startTime' 'timeLimit')
Simulators 0

Figure 3.1: The DEVS class hierarchy. (Instance variables are shown in paren-
theses.)

3.1.1 DEVS Entities

The hierarchical structure of classes for DEVS entities is shown in figure 3.1.
Class Entities is common to all DEVS classes 2 . This class corresponds to Zei-
gler's class of the same name and is as an abstract class, holding the common
attributes of its subclasses. The common attributes are the name of the entity
and the pareni of the entity. Zeigler does not include the parent in this class, but
duplicates it in subclasses. We have elevated this common attribute to the En-
tities class. Zeigler includes a list of instances in his Entities class, but Smalltalk
maintains the list of instances for us so we don't include it. Below Entities in
the hierarchy are Models and Processors corresponding to DEVS models and
processors, respectively.

Models

The abstract class of models comprises two main subclasses: AtomicModels and
CoupledModels. Common attributes of these subclasses are:

"* processor-the processor attached to the model during a simulation run.

"* inport-a list of the input ports for the model.

"* outporl-a list of the input ports for the model.
2 We have not shown it here, but Entities is a subclass of Smalltalk's Model class, allowing

us to make any DEVS model a component of the Model/View/ControUerframework. We will
discuss this more fully in regard to the design of the user interface.

37

Zeigler includes attribute cell position in this class, but that attribute is associ-
ated with kernel models, a class of model that we don't support 3 .

We require each model subclass to provide a restart method that, when
dispatched, initializes the model to some base state and answers the duration
to the next internal transition. Zeigler seems to use a method initialize for
this purpose, but we reserve the method initialize for the more conventional
application of initializing an instance upon creation. Use of a separate restart
operation allows us to construct a hierarchy of models once and restart all its
components any number of times for a variety of simulation runs. By convention,
any subclass of Models that overrides restart should include "super restart" as
part of the method's definition.

Atomic Models Atomic models comprise the leaves of the hierarchical con-
struction of models in the DEVS methodology. Recall that an atomic model is
characterized by state variables (sigma and phase), an internal transition func-
tion, an external transition function, an output function, and a time advance
function. In our implementation, state variables are represented by instance
variables and the functions are represented by methods. Every instance of
AtomicModel has instance variables phase and sigma and four methods:

intTransFn implements the internal transition function

extTransFn: aTime implements the external transition function
externalinput: aContent

outputFn implements the output function

timeAdvanceFn implements the time advance function

We have omitted the state parameter from all of the functions because in our
design, each model maintains its own private state. Nor do the transition func-
tions return a state. Instead, these functions modify the state of the model
on which they are applied. Zeigler's design represents each of these functions
as a lambda expression (Lisp function) separate from a instance and therefore
each requires a state parameter to establish a context in which the function is
evaluated. His design arises from the way in which Scheme associates methols
with instances. Smalltalk lets us use a much simpler design.

All functions except for the time advance function must be implemented by
subclasses of AtomicModel. The time advance function defined in class Atomic-
Models answers the current value of sigma. In most cases, this behavior is the
one needed, so this function definition is seldom overridden. An AtomicModel
instance has three state variables that are maintained internally:

3 In DEVS, a coupled model can be either a digraph model or a kernel model (in which all
its component models are of the same class). In ClIP , we have needed only digraph models,
so DigraphModels is the only subclass of CoupledModels that appears in the hierarchy.

38

I
*

e the elapsed time in the current state
x the external input causing the most recent event
y most recently generated content for output

Access methods exist to read and write each of these. Variables e and x are set
"when the external transition function is dispatched. Variable y is set when theI output function is dispatched.

The useful actions taken by atomic models are implemented as macros in

DEVS-Scheme and as methods in class AtomicModel:

1 Action Method

hold-4 n phase for duration holdin: aPhase forTime: aDuration

passivate in phase passivatein: aPhase

passivate passivate

continue continue

Two macros supporting the generation of output are also implemented as. meth-3 ods in the class:

Action Method

send value to port send: aValue toPort: aPort

noOutput noOutput

An instance of AtomicModel is created using the class method new: aString
or using class method makePair: aString, where aString designates the model's
name. The latter method automatically attaches a simulator to the model. The
name given the simulator is the name of the model prefixed by "S:".

U Coupled Models Coupled models comprise the internal nodes of the hierar-
chical construction of models in the DEVS methodology. These models supply
the mechanism for building complex models from simpler models. Class Cou-I pledModels serves to establish a common protocol for all kinds of coupled models.
The information in an instance is:

3
I
I
* 39

Il

I

- children the set of component models.
receivers associates an input port of this model3 with the children who are connected to

it.
influencees connections between children's output

ports and input ports. Each component
is a coupling.

priorityList used to break ties resulting from two
children having the same time to next
event. The first child in this list has
highest priority. The select function (p.
56) uses this list.

The first three instance variables appear in the DEVS-Scheme implementation.
Our implementation includes a prioritylist that orders the children. The default
select function definition uses this list to determine the order in which transition
functions are invoked on children models that are ready at the same simulation
time-the earlier a model appears in the list, the higher its priority. A subclass
can override this behavior by defining its own seiectFn.

Method getChildren answers the children of the receiver-the collection of
models in the receiver's children instance variable. The following methods are
specified by class coupledModels to be provided b) ,ubclasses:

getReceivers answers a list of ch.biren that will re-
ceive an ezternal et: nt input to the
receiver.

getlnfluencees answers tMe list of children to which the
output of the imminent child is an input.

translate:model: provides port-to-port ranslation-that
is, provides the input port to a model
that is connected to i specified output
port of another modei.

While DEVS defines a variety of coupled models, our implementation focuses
on only the most general kind: digraph models. Digraph models contain a het-
erogeneous mixture of children and/or non-regular couplings between children
(see [Zei90, Chapter 5].

In CUIP , every coupled model i-• an instance of a subclass of class Digraph-
Models. Class DigraphModels containo the fundamental instance variables and
behaviors of digraph models. Recall that a coupled model is characterized by its
children models and the couplings of ports between the children, and between
the model itself and its children as specified by: a composition tree, an influence
digraph, and a select function. In our implementation, the composition tree and
the influence digraph of a coupled mode, are represented by instance variables
compositionTree and influenceDigraph, re,,pectively, and the select, function is
represented by a method, selectFn.

40

Processors

The class Processors has three subclasses corresponding to the three kinds of pro-
cessors in DEVS: Simulator, Coordinator, and RootCoordinator. The attributes
common to these subclasses are placed in Processors:

"* devsComponent -the model attached to this processor instance during a
simulation run.

"* timeOfLastEvent -the simulation time at which the last event in the DEVS
component occurred.

"• time OfNeztEvent -the simulation time at which the next event in the
DEVS component is scheduled to occur.

Each Processors instance responds to a restartAt: aSimulationTime message
that initializes the receiving processor and its DEVS component (via a restart
message). The definition for this method is a subclass responsibility. The
method must return a done message whose time supplies the simulation times
at which the processor's DEVS component is scheduled for its next internal
transition.

Our implementation of message passing is different from that used in DEVS
and DEVS-Scheme with respect to the handling of done messages. Instead of
a processor explicitly sending a done message to its parent processor, a pro-
cessor implicitly sends the message by returning it as the reply to an X or a
* message. This convention we have adopted has the cost of slowing down a
concurrent implementation because of the synchronization involved with wait-
ing for a return message, but has the benefit of simplifying our implementation,
especially since we could dispense with managing a wait list in coordinators.
Our implementation is slightly more efficient, and simpler, than that used in
DEVS-Scheme.

Simulators Class Simulators instances respond to the receipt of x and done
messages, replying in either case with a done message. Messages are received
via messages with selectors xMessage: and starMessage:, respectively:

"* xMessage: anXMessage-verifies that the message time lies between the
time of the last event and the time of the next event. If so, then the receiver
sends its DEVS component the elapsed time, forwards the content of the
x-message to the model, applies the model's external transition function,
updates the local time of last event and time of next event, and returns a
done message to report the time of the next event.

"* starMessage: aStarMessage-checks that the time in the message and the
time to next event agree. If so, then the processor gets an output value
from its DEVS component by invoking its output function and sends the

41

value in a y message to its parent coordinator, has the model update its
state via its internal transition func ion, updates the local time of last
event and time of next event based on the model's time advance function,
and returns a done message to report the time of the next event.

In addition, an instance responds to a restartAt: message:

* restartAt: aSimulationTime-sets the time of last event to the time indi-
cated in the message and sends a restart message to its DEVS component.
Based on the duration returned by the model, the processor sets the time
to next event and replies with a done message carrying that time.

This message must be sent before a simulation can be run.

Coordinators A class Coordinator instance handles the processing associ-
ated with the coupled model paired with it as its DEVS component. Since a
coupled model contains other models, each connected to a Processors instance,
a coordinator has child processors determined in the obvious way. It is these
children that a coordinator manages-that is, simulation is effected by a coor-
dinator managing its children more than a coupled model managing its children

Sin response to transitions.
Each Coordinator instance maintains a list of children in an instance variable,

tNChildren. [The name was invented by Zeigler.] This list contains done mes-
sages rather than processors, each such message containing a simulation time
and a message originator, in this case the originator being one of the coordina-
tor's children. The messages in tNChildren are sorted in increasing order of the
times they contain. Only one message for each child can appear in the list.

Each coordinator also maintains a variable naming its imminent child, starChild.
The imminent child is set each time a * is received and processed. This child is
a model-one of the children of the coordinator's DEVS component.

A coordinator responds to z , * , and y messages:

* xMessage: anXMessage--verifies that the message time lies between the
time of the last event and the time of the next event. If so, then the
receiver determines which of its children have an input port connected to
the port on which the external input is arriving. To each of these children,
the coordinator sends an x message and places the resulting done message
into its local tNChildren that contains a list of done messages, sorted by
time. Thus, the imminent child appears at the front of this list. The time
of the last event is updated to the time appearing in the z message, and
the time of the next event is set to the time indicated in the done message
appearing at the front of tNChildren.

e starMessage: aStarMessage--sets starChild to the imminent child from tN-
Children and removes that child from the list. [Note that tNChildren is

42

sorted by simulation time. If two or more done messages at the front of
this list have the same time, then the select function of the DEVS compo-
nent is used to determine which child is imminent.] Next, the * message is
forwarded to the imminent child's processor and the resulting done mes-
sage is inserted into tNChildren. A wave of y and x messages ensue, then
the coordinator updates its time of last event to the time in the * message
and sets the time of the next event based on the time in the message at
the front of tNChildren.

* yMessage: aYMessage--determines the other models within the DEVS
component that are influenced by the output produced by the imminent
child and routes the content of the y message to each in an r message
to its processor. The list tNChildren is updated to include the done mes-
sage produced by each such send of an z message. Next, the coordinator
determines whether the output should be routed to the parent in a y

message-that is, whether the output generated by the imminent child
is also an output of the coupled model. If so, then the output value is
wrapped in a y message and sent to the parent. [The returned done mes-
sage is ignored.] Finally, a done giving the time in the message at the front
of tNChildren is constructed and returned to the sender of the y message.

In addition, a coordinator responds to a restartAt: message:

* restartAt: aSimulationTime--sets the time of last event to the time indi-
cated in the message and sends a restartAt: message to each of the proces-
sors for the component models of its DEVS component. Each restartAt:

message is responded to with a done message and these are collected in
tNChildren. Based on the simulation time in the first entry in this list,
the processor sets the time to next event and replies with a done message
carrying that time.

This message must be sent before a simulation can be run.

Root Coordinators A RootCoordinator instance manages a simulation run
of a model by sending a sequence of * messages to a coordinator to which it is
attached. The coordinator is the root of a model hierarchy.

A simulation is constructed by attaching a coordinator to an instance of
Root Coordinator. The root coordinator must first be sent one of three messages
to reset the simulation, all of which send a restartAt: message to the attached
coordinator:

"• restart-equivalent to self restartAt: (self startTime), where startTime is
assumed to have been set to a simulation time with accessor startTime:.

"* restartAt: aSimulationTime-equivalent to self restartAt: aSimulationTime
andRunFor: Duration infinite.

43

* restartAt: aSimulationTime andRunFor: aDuration-establishes a start time
and an end time for a simulation run-that is, the simulation run termi-
nates when the simulated time reaches the specified start time plus the
specified duration.

A simulation run actually starts when a root coordinator receives a simulate
message.

Since a root coordinator acts as a parent processor for a coordinator, it can
receive y messages corresponding to the output of the model paired with the
coordinator. In our implementation, y messages are simply ignored.

A root coordinator also contains support for a window interface. This
support-in the form of processes and semaphores-is discussed in detail in
connection with the user interface (see Chapter 3.3).

3.1.2 Extensions

In our design, we have extended DEVS to include coupled models whose compo-
nents vary over time. While this may violate the formalism of DEVS, we found
it useful for modeling the workstations at a piece of equipment. We define a
workstation to be a portion of a piece of equipment. For example, a spreading
table might be used as a single workstation for producing a long spread, and
then used subsequently as two workstations for working on two spreads simul-
taneously. Without the ability to vary the components of an equipment model,
we would either have to include a large number of components-for example,
one for each potential workstation-or we would have to implement a discrete
event simulation algorithm to model the various workstations in use at a given
time.

We have restricted our extension to digraph models, using the term dynamic
to describe the behavior. The implementation of a dynamic digraph model re-
quires the cooperation of an attached coordinator since the two objects work
together to implement the behavior of any digraph model. Consequently, the
conditions under which a coupled model can change its components are re-
stricted to those that maintain the integrity of the coordinator and all other
processors in the hierarchically structured simulation whose states are based on
the state of this coordinator. We use a subclass, DynamicCoordinator, to effect
changes in a way that is invisible to other processors.

Recall that a coordinator maintains a sorted list tNChildren that provides
information about the times at which each component model is due for a tran-
sition. One entry in this list identifies the imminent child, and the time of
next event for this imminent child is reported by a coordinator as the time of
next event for the coupled model. Thus, any change within the model must be
done between the activation of the processor with an z or a * message and the
subsequent emission of a done message by the coordinator.

It is interesting to note that a coordinator does not send x messages to a

44

coupled model, but rather sends such messages directly to its component models'
processors based on information provided by the coupled model in messages such
as getinfluencees and getReceivers. Consequently, one of the component models
must take responsibility for restructuring the components of a coupled model
and, in fact, this model must be an atomic model.

An atomic model might want to change a digraph model's component struc-
ture at any transition point, corresponding to the arrival of a * or an X message
to the coordinator for the dynamic coupled model. We restrict the decision to
change to the imminent child, an atomic model. Consider two cases:

1. The arrival of a * message signals the occurrence of an internal transition
and is forwarded to the processor corresponding to the imminent child in
the form of a * message. Since the imminent child is an atomic model, then
its simulator will invoke its output function and pass the output to the
simulator's parent, then invoke the model's internal transition function,
and then invoke the time advance function. Based on this time as pro-
vided in a final done message provided to the coordinator, the coordinator
determines the schedule for this atomic model's internal transition.

If the atomic model wishes to restructure the digraph model, then it must
do so when it is the imminent child, and it must take responsibility for up-
dating the state of the coordinator. It must preserve itself as the imminent
child and is allowed only to change the internal and external couplings.
including removing and adding components in the process.

2. The arrival of an r message signals the occurrence of an external transition.
The message is distributed to all component models connected to the input
port on which the message arrives. The processing required is the same
as described above for a * message.

Thus, an atomic model can restructure the dynamic coupled niodel con-
taining it, but can do so only as an imminent child and by preserving itself as
the imminent child. Consequently, a dynamic model will typically contain an
atomic model that acts as a manager for the model-essentially a model that
monitors the activities of the other components and activates itself by becom-
ing the imminent child, taking appropriate action, and returning to a passive,
monitoring state.

This design violates the modularity of DEVS because certain atomic models
are aware of their status as a component in a coupled model. A better design
would, p.rhaps, make what we have described as a manager a part of the coupled
model itsc.f q.•d somehow coordinate more closely with the coordinator. Our
approach is based o,- the way in which coordinators interact directly with the
processors of component models of a coupled model.

Independent of the best way to include these capabilities. i, is clear that
DEVS as defined was not sufficiently powerful in providing the functionality we
needed to handle multiple, dynamically varying workstations within equipment

45

ntiodels. Our It-signof olydbnaiki enutitis thle~~le probl.In *y-xtipi i3 ~D 1VS.

3.1.3 Support Classes

A~ numiber of classes have been definied to support the D)E VS nir:udiio-

lation. These classes are presented tin this section.

DEVS Messages

The four types of messages used to coordinate processing during ;I ýi~inuaiiit

run are structured as follows:

OEVSMessage ('source' 'time')I DEVSIOMessage ('content')
XMessage0
YMessage (I ~DoneMessage (

StarMessage ()

I ~ ~This organization's structure reflects the fact that dont. and (:o~sge arr.'
no content. All messages carry a time stamp and the proces,,sor that)rnigriatvd
the message. The time stamp is an instance of class SimulationTime (Sere sf-tltioi
3.1.3), The model is an instance of class Processors.

Amessage content is represented by an instance of class Content. A content
has' two attributes: a port and a value. The value is generated by a model and
can be any object. A port. is an instance of clauss Port Whih ýetl xgnakv-rsa Innod.AI ~and a port name. The namne of a port is always represewehd as a Sinalitalk
symbol-for example, #in. A port can be constructed by seding a crommin
message to a model-for example, (M ,p) creates ;tn Instance 'Jesiinaltig porlI p of model M.

We note that at some points during a simulation, a proc4essor might bc
required to send a y message even though no output is available, Like Zeizer,
we represent a null content explicitly-that is, as a Content instance thlar has

null port and value attributes.

Model Components

The structure of a digraph model Is represente~d by an Instance of Composi-
tionTree tha.t specifies the coupling among the component models. An instanre
represents a specific composition tree as defined in ,769O. pp- 2Wf. 1). 567. Pro-I tocol provided for an instance supports the construction of the, treeý anId the
querying of the structure and various couplings, Note that Zeigler is not clear
about where coupling information is stored. We have selected to store it, in theI composition tree. An instance has five components-

I 46

I
I

root the root of the compoatihon tree

leaves the leaves of the composition tree.

extlnpCoup the external input coupling which con-

nects the input ports of the coupled
model to one or more of the input ports

of the components--this directs inputs
received by the coupled model to desig-

nated component models.
extOutCoup the external output coupling which con-

nects output ports of components to out-
put ports of the coupled model-thus
when an output is generated by a compo-

nent it may be sent to a designated out-
put port of the coupled model and thus
be transmitted externally.

intCoup the internal coupling which connects

output ports of components to input
ports of other components-when an in-
put is generated by a component it may
be sent to the input ports of designated
components (in addition to being sent to
an output port of the coupled model).

A coupling is represented as an instance of class Coupling which is simply an
ordered pair of ports designated as the from port and the to port.

Simulation Time

In his description of DEVS Scheme, Zeigler is vague with respect to simulation
time. In all of his examples, time is represented as an integer value that starts

at zero and progresses toward (positive) infinity, which is represented by the
Lisp atom 'lifn. This representation of time was not useful for us: we needed
to keep track of date and time of day because, for example, an operator's work
schedule is a significant factor in determining when a task is completed or when
an event in a model might occur-for example, a shift change. As a result, we
decided to treat simulation time more formally and model it in a class. As such.
we have modeled two aspects of time: a simulation time and a duration.

A simulation time is a specific date and time-for example, 1:00 A.M. on I
January 1993. All times are tracked to the minute. We decided to ignore seconds

since it is doubtful that any meaningful results would come out of tracking
seconds in a simulation. A special simulation time is Infinity, indicating a time

very far in the future.
We distinguish a simulation time asjust described from a duration of tine. A

duration is a length of time--for example, five minutes or ten days. All models

I 47

I
I
I

I

maintain sigma as a duration. An infinite duration is Sloietillites dleot-ed ;Ls
fo re te r.

Some arithmetic operations are defined onA sinulation ti(i," and ,Ur1tt4UitIs

SimulationTime - SimulationTime - Duration
SimulationTime + Duration - SimulationTime
SimulationTime - Duration - SimulationTime
SimulationTime + Duration - SimulationTime
SimulationTime - Duration - SimulationTime
Duration + Duration - Duration
Duration - Duration - Duration
Duration + SimulationTime - SimulationTime

If any of the operands are infinity or forever, then the result is inlinitx.Nr o r-\,'r
as appropriate. Relational operators for comparing two simmla ion tmws or Two1

durations are also defined. Comparing infinity to infinity, or forever to forver.
is undefined.

Our use of these classes was a convenience in coding ilp) our models of cutting
room resources. We augmented the predefined Smalltalk class Number with a
set of methods to facilitate the creation of durations. Tvie mesages minute(s).
day(s), week(s), and month(s) sent to a number answer a duration.

The classes associated with simulation time and duration are: Simulation-
Time, Infinity, Duration. and InfiniteDuration. Class descriptions may be foundJ

in the appendix.

Miscellaneous Classes

Just as we found it convenient to define classes to model ý.iil1lllatonitiiellit. WO
defined classes to represent lengths-inches, feet, and yards. (las, Length 'II-
bodies this concept. As in the case of Duration, we have added methods to class
Number to facilitate the creation of lengths-for example. 3 yards produoes an
instance of length. Arithmetic is also defined for lengths-adding and suit ract-
ing lengths is supported as is multiplying and dividing lengths by a number W,,
do not support the multiplication or division of two lengths (W\e didn't Watli
to get involved in tracking units-for example. recognizing that the product
of two lengths is an area-because it was not necessary for the simulattons w,
were trying to construct.] The class description for Length may he found in the

appendix.

3.2 Application Classes

Application classes comprise those subclasses of Models representing the -itt-
ting room and its resources. The main kinds of models in tie cutting room
application fall into four main categories:

48

* Plans and tasks

5 Cutting room

* Equipment and workstations

* Resources

We describe each of the main classes.
The classes in the hierarchy relating to application objects is highlighted In

Figure 3.2. Note that the class Entities is a subclass of Model4 . This allows any
DEVS entity to be used as a model in connection with views as described in
Section 3.3.

3.2.1 Plans and Tasks

The simulation is controlled by a plan that details the tasks to be performed
and the operators and materials assigned to perform them. The purpose of a
simulation run is to model the result of the plan in a particular cutting room.

A plan is a sequence of work assignments. Each work assignment comprises
a task, operators to perform the task, and a workstation on which the task is
to be performed. Operators can be specified to perform a task individually or
together with one or more others. Additionally, several alternative assignments
are possible so that, for example, one of several operators might perform the
task, depending on availabilitys. A task is a description of ajob to be performed,
including one or more materials to be used for the task. For example, a task
might be to spread thirty 5-yard layers of white cotton fabric, taking the fabric
from two specific rolls. A work assignment would associate that task in the
plan with an operator and a workstation. A workstation is simply a portion of
a piece of equipment-for example, the spreading task might be performed on
the left half of a spreading table.

The work assignments in a plan are to be performed in the order in which
they appear. Associated with each work assignment is a status of completion-

unstarred, in progress, suspended, and completed. Initially all work assignments
are marked unstarted. Given a plan P, a set of operators 0. a set of materials
M, and a set of equipment £, do the following until all work assignments are
completed:

41I is unfortunate that we use two classes with very similar names, Model and Models- Th,

former is defined by the Model/View/Controllerfrarnework. The latter is the correspondinz
DEVS entity. It is interesting that Zeigler uses the same name (with an "s") for this class
The reader is urged to note the distinction between the two names. In general. we will us-
the term model to refer to DEVS entities unless otherwise noted.I5Our current simulation does not take advantage of this facility because it complicates the
routing of operators to workstations.

49

I Model
Entities

Models
AtomicModel

Dispatcher
Equipment

CuttingMachine
AutomaticCutterI BITECutter

LaserCutter
ManualCutterI SpreadingMachine
AutomnaticSpreader

Table
CuttingTable

SpreadingTable
Planner

CoupledModels
DigraphModels

Dyna micDigraph Models

RoomI CuttingRoom
Warehouse

Processors
CoordinatorI DynamicCoordinator
RootCoordinator

* Simulators

Figure 3.2: CdP application classes (boldfaced).

* 50

I
I

For each operator o in 09 that is available at the current time,
associate o with the next work assignment that is not completed and
that entails o.

For each material rn in ,M, associate it with the next work aJ-s-
signment that is not completed and that entails the use of in.

For each work assignment w that is unstartred or suspended,
with which sufficient materials and operators are associated, and
for which the required workstation is available, mark w as being in
progress.

If the operator must leave the workstation before the task is
completed, then mark the task as suspended and return the operator

to 0.
'If a task is completed, then mark the work assignment for it

as completed and return the operator to Oand any unconsuined
materials to AM.

I Under this discipline, each operator extracts the tasks on which he is sched-
uled to work and does them in order, realizing that some tasks might be com-
pleted while he is off-duty or on break. Similarly, materials are moved around
the cutting room from equipment to equipment, depending on where that ma-
terial is next to be used. The appearance of various resources-operators and
materials and equipment-in the plan place a partial ordering on work assicZn-
ments. This algorithm preserves that ordering, except that in the case in whic:h
alternative operators ol and o2) are specified for a given work assignment w. arid
o starts work on the task, then oj (j - i) can start work on a task appearing
subsequently in the plan, later to return to complete w.

Some tasks require the output of a prior task as materials-for example.
cutting tasks generally depend upon the completion of spreading tasks. We
represent the result of tasks by tickeis that are defined in work assignments. A
ticket may appear as a required resource in a task. The relation between ticket
definition and ticket use also creates a partial ordering on tasks that must be
followed in carrying out a plan.

As an example, consider a portion of a plan involving three operators, three
rolls of fabric, and two spreading tables:

1I
I
5 51

I

Task Workstation Operators Ticket

1. Spread 4 layers of fabric A, fluey
then 4 layers of fabric C. Table 1

2. Spread 10 layers of fabric B. ewey F2 J

STable 2

3. Spread 6 layers of fabric A. Louie

Table 2

4. Cuts,.I- Dewey 4
Table 1II

The equipment column shows a workstation as a shaded portion of the whole.
We designate and represent a workstation internally just that way- A ticket
is not required if the result is not of interest, though in this case we need to
process the result of each task.

Our current design includes four tasks, each of these is represented by a
subclass of the abstract class Task.

"" Spreading-expressed as, "Spread I rolJ,, roll 2 , roll,} following tern-
plate T," where the template specifies how the spread is to be constructed
and the fabric rolls satisfy the requirements for fabric specified in the tem-
plate. The product of this task is a spread.

e Cutting-expressed in terms, of "Cut spread," where the spread is an
instance of Spread or a ticket that represents a spread product of some3 task. The product of this task is a set of stacks.

" Moving-expressed in terms of, "Move object to workstation," where the
object is any material (including a ticket) and workstation designates a
workstation, usually one at the same equipment. This task represents an
operation such as sliding a spread from one end of a table to the other
or positioning a cutter at the end of one spreading table to the end of3- another.

"" Bundling-expressed as., "Bundle set of stacks," where the set of stacks is
an instance of StackSet or a ticket that represents a set of stacks produced

* as a result of some task.

352

I

i
I

1
1

A task must be able to compute the time needcod to complete it by the
operators at the workstation. A task also tracks its -o.mpletion status as a
fraction of the whole. This fraction-represented as a percent-is determined
by the operator and the materials that contributed to the level of completion so

far. Thus, a task that is half-completed by one operator in an hour will require
two hours to complete by another operator who works at half the efficiency at
the task as the first operator.

3 3.2.2 Cutting Rooms

A cutting room model is a digraph model comprising a model for each piece of
equipment and three special models:

e A Break Area in which each operator resource resides when it is off-duty--
that is, on break or not at work. However, an operator might be idle. but
by a piece of equipment instead of in the break area because an on-duty
operator waits by the equipment containing the workstation at which his
next task is to start. (The algorithm we use was described in Section 321.)
All operators are in the break area when a simulation run starts.3 * A Drop Area in which each material rsource resides when it is not required
for a task. All resources are in the drop ;,.rta when a simulation run starts.

* A Planner that holds the plan control!,T,> the simulation. For historical
reasons, this component is called "Osc.r" anr roughly corresponds to
the cutting room manager. This corni onent disseminates the plan for

performing the various cutting room task to other simulation components
and collects simulation results.

This organization is illustrated in Figure 3.3.
CuttingRoom is a subclass of Room, whir,, is an abstract digraph model

class. A CuttingRoom instance contains eqlIinent specified at the time of
instance creation and the three special models described above. Oscar is an
instance of a class Planner that has an output port #plan, connecting to the
#plan port of the break room, the drop area, and each equipment model (see
Section 3.2.3). The plan is distributed to all other component models of a cutting
room via these connections. A planner has an output port #result through which
statistics about the plan are produced when all work assignments in the plan areI completed. The plan held by a planner is sent over each #plani, i = 1,2.. .n.
where n is the number of other models in the cutting room (equipment, drop
area, and break area), when a plan is received on its input port #start. Statistics
about the plan are computed based on inputs on its #done input port. These
inputs are instances of class WorkAssignmentStatistics that provide information
about the start and end times of the task it includes.

The drop area and the break area in a cutting room are instances of class
Dispatcher. A dispatcher is an atomic model that manages a pool of resources,

1 53

I

I1

11

p I_
_ _ __ppa o tinotr u

maau

Bra Areotabe__11_

Figure 3.3: Cutting room model components and their connections.

1 .54

i

Ii
dispatching a resource to another model in accordance with some plan. A
"dispatcher has two input ports, #plan and #in, and n output ports: #out,,I #out 2, . #out,. Port #plan is an input port on which a plan is to be received
that drives the routing of resources to and from the dispatcher. Resources arrive
on port #in and are dispatched to other models on an #outi port.

Each output port is assumed to be routed to one model. The association
between model and output port is stored in a dictionary (mappingDictionary)
and is established at instance creation using the models provided. For example,
if the models are m, and rn 2 , then an association between #outl and mr and
between #out2 and m 2 is made. When a resource arrives on #in. and the
plan reflects that the resource should be routed next to ml, then the resource
is output on #outl based on the dictionary association of m1 and #outl. A
CuttingRoom instance ensures that connections are correct.

Every resource in a dispatcher must be able to answer the message whereNext.
aPlan, providing the next work assignment in which the receiver is to be used.
An answer of nil designates that the resource has no more uses within the plan.
No resource is dispatched until it is available for use-for example, an operator
who is off-duty

At the start of a simulation, all operator resources are placed in the break
area and all material resources are placed in the drop area. Each dispatcher
instance sends resources to the equipment model containing the workstation at
which that resource is first used, based on its reply to whereNext: aPlan. When a
model no longer wants a resource, it routes the resource back to the appropriate
dispatcher.

3 3.2.3 Equipment and Workstations

Instances of class Equipment-or more properly, instances of its various subclasses-
model pieces of machinery. An equipment model has three input ports:

* #plan on which a plan arrives before any other inputs are accepted

* #optrln on which operators arrive

I #matlin on which operators arrive

and four output ports:

i • #done on which statistics about a completed work assignment is emitted

* #product on which "i completed product is emitted

3 #optrOut on which operators are emitted

* #matlOit on which materials are emitted

55

SEquipmentI

done
plan

product

opII

optr~noptrOut

matdln

matlOut

Figure 3.4: An equipment model.

emit emit busy operators emit product

Figure 3.5: States of an equipment model.

56

Equipment has behavior such that if it has a w'ork assignment in the plan
that is still not completed, and sufficient resources and operators are available
at the equipment to perform the work assignment, and the workstation for the
assignment is available, then work on the task is begun. Upon completion of a
work assignment, statistics are emitted on port #done, the product is emitted
on #product, the collection of operators who performed the task are emitted on
#optrOut, and the collection of materials--what's left of them-is emitted on
#nmatlOut. It is sometimes the case that an operator at a workstation, or an
operator in the wait area, goes off-duty. In that case, the operator is emitted
on #optrOut and any task on which he was working is either suspended or is
resumed by another on-duty operator in the wait area.

When a resource arrives at equipment, it is put in the wait area and then a
check is made to see if an uncompleted work assignment in the local plan-those
work assignments for this equipment-can be started based on the presence of
all required resources in the wait area and the availability of the workstation
specified6 . When a work assignment is started, eligible operators in the wait
area not selected for the task are emitted on port #optrOut (where they are
routed to the dispatcher).

Every piece of equipment comprises a set of workstations. For this class,
only one workstation can be active at a time. (See subclasses for equipment
that can support multiple active workstations.)

Each piece of equipment has a wait area at which idle operators and materials
wait for the start of a task specified in a work assignment. The wait area is
represented by instance variables waitingOperators and waitingMaterials.

Equipment has the phases and transitions shown in Figure 3.5.

3.2.4 Resources

Resources comprise the operators and materials to be allocated to a set of work
assignments. Class Resource is an abstract class that contains Operator and
Material as subclasses. Resource establishes common state and protocols to
determine:

"* job-the work assignment in which this resource is participating (if any)

"* equipment-the equipment at which this resource is stationed (if any)

"* status-the current status of this instance: #busy or #idle

"* Zmage-a pixmap that provides a picture of this resource in its current
state.

The images are stored in a dictionary and retrieved using the current status as
a key.

6The current implementation insists that work assignments be started in their order in the
plan. However, this is not necessary as long as the partial ordering is preserved, This was
just an implementation convenience

57

I

Operators

Operators are resources that model the behavior of workstation operators. An
operator is not a DEVS entity, but an object that is passed between models
and affects their states. Operators are unusual objects in this system in the
sense that they are autonomous, acting based on the circumstances in which
they find themselves and changing state independently of where they are based
on simulation time-for example, quitting work for the day when a shift ends.

We have addressed this autonomy by making operators passive components
and having all models that base their states on operators-equipment mod-
els and dispatcher models-be aware of operator state. For example, a dis-
patcher model will consult with each operator object it wishes to dispatch.
asking whether it is available at the current simulation time and dispatching it
if it is, or basing an internal transition on the time at which it becomes available
if it is not. In short, models that use operator resources consult the operators
as part of their transition functions.

As a passive object, each operator must be able to respond to two messages:

* availableAfter: aSimulationTime to which the receiver answers the duration
until it is available after the time indicated

* availableAt: aSimulationTime to which the receiver answers whether or not
it is available at the time indicated

Thus, an operator instance need only know its work schedule to respond to these
messages.

Operator instances have other operations as well, such as being able to an-
swer its efficiency at a given workstation and the various tasks it is asked to
perform.

Materials

Materials are resources that are consumed or produced in a cutting room-for
example rolls of fabric, markers, spreads, stacks, and so on. The class Material
serves as an abstract class and all materials are instances of its subclasses.

Unlike operators, materials are passive, manipulated by the models.
Certain equipment resources must be considered materials-namely, hand-

held equipment such as rotary shears. These items do not function in the same
way as other equipment. For one thing, they do not support workstations. For
another, they can be moved around just as materials.

3.3 User Interface

The user interface classes provide support for windows that display a simulation

run in progress and buttons for controlling a simulation run. The interface is

58

I
I

Object
VisuaiCorr onent

VisualPart
DependentPart

View
CuttingRoomSimulationView
DEVSRunView
DEVSView
ModelsView

AtomicModelView
DispatcherView
EquipmentView
PlannerView
SimpleProcessorModelView
TransducerModelsView

ProcessorsView
CoordinatorView
Root CoordinatorViewSimulatorsView

S imulationRunView

Figure 3.6: User interface classes.

based on the Model/View/Controllerframework. The simulation model is a
subclass of Model. The simulation window contains instances of classes View
and Controller.

The user interface classes comprise views of gome of the DEVS and appli-
cation classes. All of the user interface classes are subclasses of the class View
defined by Model/View/Controller. The hierarchy is shown in Figure 3.6.

53.3.1 Simulation Run Views
The window placed on a screen to show a simulation run is an instance of
SimulationRunView. An instance is created with the message openCn: which
takes an instance of a root coordinator as its parameter 7 .

A simulation run view creates a window on the screen containing a view for
each atomic model in the tree connected to the root coordinator. The window
also displays a pane for the root coordinator that displays the simulation time
and other simulation run information.

7rln the current design, a scenario is a root coordinator, but a scenario ,lass should have3 been defined!

* 59

A simulation run view provides four buttons for controlling :t Simulation

Restart sends a reset message to the root coordinator.

Go sends a rIessage go to the root coordinator
Pause sends a message pause to the root coordinator

Step sends a message step to the root coordinator

The meanings of these buttons are described in the livr's Manual lit
buttons can be used at any time, though the Restart button generait ,,In be
used only once at the beginning of a simulation run unlss all ,,)f the ziodeis,,
and processors involved have stored their start states to permit r--ettilg In
addition, all consumed materials must be re-created, so restarting os a ;I notr1%ivIl
operation, in general. We have included the button in our dJ.gn priniarily t,
help us with debugging.

The placement of the various views in the window is hard-coded for our Pr,-
totype. An interface should be defined for more explicit layout of the various
views, perhaps with an interactive component. This capability entails more pro-
gramrning than we could address within time constraints. Idally. aniy rnoýdie'
view could be placed anywhere within the window. Similarly, coupled ruod-
els could have their component models arranged arbitrarily within the model
boundaries. The Smalltalk class library supports such operations, but we were
unable to take advantage of this because it took us a long time just to figure
out how to get the rudimentary set of views installed in a window"

The various views installed in the window display bitmaps intended to por-
tray the status of the model. Consequently. every DEVS entity must be able to
provide an instance of Pixrnap (or one of its subclasses) in response to a state
message.

3.3.2 Models Views
Class ModelsView provides an abstract class from which all other model view
classes inherit. This class provides a pixmap comprising a rectangle labeled with
the name of the model provided upon instance creation. The size of the rectangle
is determine by the messages defaultWidth and defaultHeight. A subclass can
override these methods to change the size of the pixmap.

Each model view has a rectangle in which subclasses can place additional
information. This rectangle is accessed by subclasses using the message ;nse-
tRectangle. The origin and corner of the inset rectangle can be used to determine
where subclasses can put additional state information.

A subclass of ModelsView is defined for atomic models and for digraph mod-
els._ _ _ _ _ _ _

8In fact, we were unable to eliminate a bug in our implementation with respect to the

buttons. For some reason, the window must be scrolled to the top before any button press
will take effect.

60

Atomic Model Views

Instances of the class AtomicModelView display the current values of r. sigm

and z for the model,

3.3.3 Processors Views

3.3.4 Synchronization of Views and Simulation Runs

A root coordinator and a view must synchronize their operations When re•:eiv
ing a go message, a root coordinator spawns a process to perform a simulatiou
run. The view controls this process by sending messages to the root coýiirduuator
These messages are:

* reset-restart the simulation

* pause-interrupt the simulation on the next iteration of the loop that
advances global time

* step-run an interrupted simulation one time step

e resume-continue running an interrupted simulation

These messages control the actions taken by the simulation run process and
are translated by the root coordinator into actions on its rurrent mode that
reflects one of five states for a run:

"* idle-not yet initialized, or run completed

"" ready-initialized, but not yet started

"* running-run in progress

* suspended-run suspended

"• stepping-running a single step

The mode is set using accessors mode and mode: which implement critical
regions using a semaphore modeSemaphore to ensure exclusive access. An ad-
ditional semaphore, controlSemaphore, is used to suspend the simulation run
process when the mode is not running.

This design using a separate process and semaphores was necessary to get
the interactive behavior that we wanted in the Objectworks environment, The
Model/View/Controllerframework is designed based on a transaction-oriented
model that cycles between user-initiated stimulus and model response. Our
system requires that the system be able to operate-that is, run a simulation-
freely on its own, providing the opportunity for user intervention.

61

1

S3.4 Debugging Support

The system contains code to support debugging II both the frr of 1OggWng
message traffic between procesbors and models. and in the forni ufl ;l mteractive
user interface.

I 3.4.1 Logging Messages

Messages sent and received by the entities In the system can be lugged 11NK d"•
the name of an open write stream to the class Entities (or anry of its •ubcI:.,-s)
via the message logStream:. The output is text written to Lhe streatm. ,11'
message per line. For example, the following s4queince will log nite'sseto-1 t h"
file foo. log:

Processc.s logStream 'foo log' asFilename writeStream

The file can be closed by sending nil or another streamri object ;us the parameter

Processors logStream. nil

Logging output is also available v WIEX format by sending true as the
parameter to a teXFormat: message:

Processo;- teXFormat: true.3The format ci: be cancelled by sending false as the parameter. The output
makes use of ct number of macros that can be defined for convenience. TIhese
macros fall ilit., two general categories:1 1. General DEVS components. These are the macros that pertain to mes-

sages a;:.l their contents--messages sent and received, ports. times, and
content

\logMessage{
tezt}

\sendingMessage{ target entity}{content}
\logTime{time)
\receivedMessage{ content I
\outputEh{ value)
\timeAdvanceEh{duration to nezt transition)
\extTransFn { elapsed time) { input value)
\intTransFn{ new phase}
\port{ model name) { port symbol)
\Content {port} { value I
\DEVSMessage{ type (originatorj } time I
\DEVSiOMessage{ type }{ originator} (time) } alue}

6

I
I
I

2, Stiyulation-specific corn ponerlis I'lhese arte macros, whcre iiztiiwra-, A irr iiJ,

fromn the narnes of the niodels and proces-sors in a sialtw.I hrý lnacr.-

namne corre-.sponds to the name of all .- nTllty -for '..ali~pie. a 1110d"I Niailli-d

M is represented by the macro \M and its simiulator S M by th,ý nzia,'nr
\SM. (Any zion-alphabetic character is remloved fromn the siailit.to-satmy
IWTEXnanung conetieftonls.) Each of thense mnAcros has unt, argunumei b

operation being logged by the component a.sociated with the ii-ailr ,
example, \SM J\received Message(..)

3 ~ ~The macros below were used to produceý the output in Section 2'3

\nevenvironment {CLIP}{

\begin~tabbing} ki3

3 \end~tabbing)

\newccmmand{\RC}(1J{#i W\

\newcominand{\CEFP}Ci){\> #1\}
\newcomma~nd{\SP}Ci){\> \> 91\\

\newcommand{\CEF}J1iJ{\> \> \> #I W\
\newcommand{\SGEI1t}C1]{\> \> \> \> $1\\
\nevcoinmand{\STRAISD}CiJ{\> \> \> \> \> #1 \\I

\newconmmand{\PROCESSOR}C1J{\> \> {\am Xi}\)
\nevcommand{\GENR}CiJ{V \> \> \> (Nem #1} \
\newcommand{\TRANSD}Ci){\> \> \> \> \> {\em xi} W\

\newcommand{\1og~essage} C) (1j*
\newcommand{\sending~essage} (2) (send: #21
\newcornaand{\logTime}C1){\rula~oem}{4ex}{\bi Time: W!}
\nevcomiand{\receivedMessage}C) {1recv: #1}

\newcaznmand{\outputEh} (1){output?C) $\righta~rrooS #1}
\newcommand{\timeAdvanceEh} Ei){ta'() \rightaxrow 911
\navcommand{\extTransFa1C2]{ext trans fn(#i, 82))
\nevcommand{\intTransFn}(iJXint trains fn() \rightarrow *1)
\nevcommand{\port} [2) (#1. #2}

\newcommand(\Content} [2) {#2}
\newcommanxd{\DEVS~aasage} [3) {V{#1}$\fbox{#3}}
\newcommand{\DEVSIONessage} [4J{$-(#l}$\fbox{#3: #4}

The output of the simulation run is formatted in a CLIP environment. Note t ha-,

the simulation contains a processor model P and we had to rename the miacro

* 63

I
I

\P to \PROCESSOR to avoid the predefined macro for the paragraph ii lf)A

Alternatively, we could have just renewed command \P

3.4.2 Debugging Views

In addition to logging messages to a tile, we have inripleh-ented eww fý.r !utirý
actively monitoring the activity of DIVS entities. These •wws a#u, iare,
of View and one class exists for each kind of DEVS processor

Object
VisualComponent

VisualPart

DependentPart
View

ProcessorsView
CoordinatorView
Root CoordinatorViewSimulatorsView

Each of these views display the instance variables of their corresponding DEVS
entities-for example, a SimulatorsView instance displays sigmaI Ilapsed tin, i

the current state, the most recently received x message, and the inst r,',cetly
I sent y for its model.

These views are installed within other views and each is attached to 1h1,
appropriate model upon creation via the new- aModel message sent to the fft.,
For convenience, each DEVS class responds to the message view with the ý-Ias
appropriate for itself-for example, an atomic model responds with the, Simula-
torsView class.

These views are most useful for debugging and are currently a part of dass
SimulationRunView instances because we have been debugging, At some point,
these views should be removed. It is more appropriate to have separate win-
dows providing application and debugging views of a simulation run. That
design occurred to us late and we were unable to make the changes requird

(straightforward and simple as they are) within our time constraints.

3.5 Testing Support

Test cases are provided in some class comments, generally in a section labele l
Testing. Some classes require a substantial amount of setup-for example, com-

plex networks of objects-so test cases are not provided for them.
The experimental frame example used by Zeigler to describe the various

aspects of DEVS has been the basis for our testing of the DEVS components of
our system. This model hierarchy is embodied in the classes SimpleProcessor.

* 64

I
I
I

I
!

Generators, and Transducers (see Appendix C). We (id ntot iiphment , ,
explicitly model experimental frarntes (EF) or experimtental frames 01rcine{,d to
sirnple processors. Instead, these digraph models are constructed ,xplicitly inl
a code sequence found in file simpleTest. This code parallels the coristructlull
used by Zeigler.

Class DEVSRunView provides a window for a run of this model hit-rarchy
The window is laid out with a column of views on processors down th,- itft ý,id-
of the window and a column of views of models down the right The p lnsr
and model views appearing in the same row are paired. This view allows o•i,
to watch the message traffic between processors as well as the state changes t,
the atomic models.

To run this test, open the file simpleTest in a file editor window. select
all the text, and select do it. [The text of this file is given in Appendix C'
The program opens a window containing a view of tie various conmpoliens ')f
the model and execution begins after the selection of Restart and then 1;o
The statistics collected by the transducer art. printed to the Iranscript window
These results should match the following:

The arrived list:
'Job 5'->50 minutes
'Job 0'->0 minutes
'Job 2'->20 minutes
'Job 4'->40 minutes
'Job I'->I0 minutes

'Job 3"->30 minutes
'Job 6'->60 minutes
'Job 7'->70 minutes
'Job 8'->80 minutes
'Job 91->90 minutes
'Job 10'->I00 minutes

The solved list:
'Job 0'

'Job 1'

'Job 2'

'Job 3'
'Job 4'

'Job 5'
'Job 6'
'Job 7'
'Job 8'
'Job 9'

Avg. turnaround time: S minutes
Throughput: (i/10)

1 65

U
I
I

I
I

I Appendix A

I DEVS Class Specifications
I

Specifications for DEVS classes are provided in this appendix. These classes are
in the DEVS-Simulation Category in the image st8O-CJIP.

A class specification follows the format:

Superclass subclass: C las

I A comment about the purpose and usage of the class,

instanceVariable
inheritedInstance Variable

instance method category newlnstanceMethod
inheriledInstanceMethod
overriddenInstanceMetlhod

class method category newClassMethod
inheritedClassMethod
overriddenClassMethod

66

The classes in the DEVS component of CalP are structured a.s:

Entities [68]
Models [80]

AtomicModel [88]

CoupledModels [82]
DigraphModels [84]

DynamicDigraphModels [86]
Processors [69]

Coordinator [73]
DynamicCoordinator [75]

RootCoordinator [77]

Simulators [71]

The number in brackets following each class name is the page number on which

the specification starts.

67

I
I

Model subclass:
Entities

I Entities are the root class in DEVS. This is an abstract class that i'oipr,..
Models and Processors.
Instance variables:

name <Strzng> -- the name of this rntzty
parent <Entities> -the parent of this entity.

Class variables:
LogStream < WriteStream> -stream to which loqginq is to

occur, or nil. Utscd by .omc
subclasses5 TeXFormat <Boolean> -log output in a TeX format

name
parent

accessing compositePart
name

displaying state
visualComponent

initialize-release initialize

printing printOn:
printString

private-accessing name:
parent
parent:
teXNamne

private-logging isLogging

instance creation 1st
new
new:

logging access isLogging
logStream:
teXFormat:

I
U

I
I

I
I
SEnitites subclass: Processrs

S.Abstract class for a DEVS processor (see Z,'gler So1 5" "t This /,I% k /,U Io Id"
protocols for linking models in a hierarchy and tracing a simulation run Tiacrunq
is enabled if traceStream has a value other than nil.

.Note that we use 'restart' rather than 'initialize for model initialhiaton ,
use 'initialize' in the conventional way to initialize an in•t•'a rice; strr. , us 4
to reset an instance for another simulation run.

My subclasses are:
RootCoordinator
Coordinator
Simulators

Instance variables:
devsComponent <Models> -my model
childProcessors <Set> -- my direct Procc.sors cla,,s

descendents

timeOfLastEvent <Simulation Time> -the time of the last erent
time OfNeztEvent <Simulation Time> -the time of the next e•ent
lastSentMessage <String> -the last message te be sent
lastReceived.1fessage <String> -the last message to be r•ca•icud

U name
parent

devsComponent
childProcessors
timeOfLastEvent
ItrmeOfNextEvent

last Received Message
lastSentMessage

accessing childProcessors
Iast eceive&Messag,-
lastSentMessage

processorTree
proccssorTreeLeavw.s

timeOfLastEvent

timeOfNextEvent,

6

I

I

I
I

D EVS devsComponent
devsComponent

linkToParent:
restartAt:

displaying state
I SualComponen t

initialize-release initialz:e
printing printOn:

printString
private-accessing child:Ilast Received Message

lastSent Message:
parent.

processors
tirneOfLastEvent:
timeOfNextEvent:

private-logging log:
logReceipt:
logSend:to:

i vlogTime:
views view

instance creation Ist
new

logging access isLogging

logStream:
tX Form at:

I
I
I
I
I

I
I
I

I
I

Processors subclass Simulators

l A simulator controls an atomic model (see Zezgler section :1.5.3 and iectzon 4.7
Instance variables:

None.

name
parent
devsCoinponent
childProcessors
htmeOfLastEvent
tzmeOfNextEvent
last ReceivedMessage
lastSentMessage

accessing processorTreeLeaties
DEVS restartAt:

starMessage:
xMessage:

displaying state
vwsualComponent

initialize-release intialize
printing printOn:

printString
private-accessing child:

lastReceivedMessage:

lastSentMessage:
parent:
processors

timeOfLastEvent:
time OfNextEvent:

private-logging log:
logRecelpt:

logSend:to:

log Time:
protected-accessing child:

processors
views view

I

I
I
I

I
I

inIstance creatio~zx•

Ilogginig access I! U't,

loqSt ream:i te XAfornaut;

I
I
I
I
I
I
I
I

! 7

I
i

Proct-ssors subdarss Coordinator

.4 coordinator is az processov fur ai coupled Ynudri
Instance variables.

starCh ild < Processor> -- the' siniinrkrt c:liid thr ri i'U ~ ~one to get a ~m
waitList < Ordered(ollection>-, proce~ssor- %axtang f~r *1,

Sages 'V(t 4i1r -

tIng sequenti'a1 rt(Uticti(n.

star('hild tto l tri t, i

Of Ch IIdre n <,-•ortedCollectwon> -a list of my ~ chdildren , rd:

frent. Actually, a ti1't vj*jtib nrsigtieIl C2

ne~ssa g rS.I.Vote. When a coupled model is created, then its children',- processors arr hirn~d

as a tree, so there 's no need to ot'erridc method 'lzrnkToParent in lho;cls

I name
parent
devsComponenitI childProcessors
time Ofiast Event
time~f.VextEvent
last Rece zved Aessay e

lastSentMessage
starChild
waitListI tNChildren
accessing processors

starChild
tNCliildren

DEVS restartA t:
stat Mes~sage:
x NIessage;[I y Message:

displaying state

visualCornponeni5initialize-release Initialize

I
I

printing prin tOn.
prmntString

private nextLGuy
starChild:

private-accessing child:
lastRece t ed.frssage,
lastSentAfessaqe.
parent:
processors
timeOfLastiEvent
time OfYertEvent

private-logging log:
logReceipt:

logSend: to.
logTime:

views view

I instance creation 1st

niew
nlew:,

logging access tsLoggirg

logStream:
eX Format:

I
I
I
I

I
II

I

I
I

I

IC oordinator subcl,'ss: v a n c o r i a o
II3 Cordintorsubcass DynamicCoordinator

I A dynamic coordinator is a coordinator that supports simulation of a coupled
model that changes dynamically-that is, that changes its component models as
simulation progresses.
A dynamic coordinator adds operations to add and remove sub-models The
methods ln this class update the processor only. It is the sender's responszibhlty
to update the model correspondingly.
An added component cannot become the imminent child and a removed compo-
nent cannot have been the imminent child. An easy way to meet these restric-
tions is for a dynamic digraph model to contain a persistent model that performs
updates during an internal or external transition.
A dynamic coordinator is our own invention. Zeigler defines no such ob)ect.

Note that this implementation is incomplete.

name
paren!
devsComir: nent
childProc, 5sors
timeOfLa ' OEvent
timeOfNrrt Event
lastReccii, dMessage
lastSent~l. ssage
starChild
waitList
t•Children

aczcess-dyzAamic addChildModel:
removeChild Model:

accessing processors

starChild
tNChildren

DEVS restartAt:
starMessage:

rMessage:
yMessage:

displaying state

visualComponent
initialize-release initialize
printing printOn:

printString

* 75

I
I
I

I
I

private nertGuy
star (hild.

private-accessing chld:
lastReceavedMessage:
lastSentfA essage:

parent:
processors
time OfLastEvent:

itme Of~veztEvent:
private-logging log:

logRecezpt:
logSend:to:
log Time:

views view

instance creation 1st
new

logging access isLogging

logStream:
teXFormat:

I
I
I
I
I
I
I

I

I
I

I
I
3 Processors subclass:

IA root coordinator controls a simulation. It serves as the root of a hierarchy uf
DEVS models and contains one child, either a coordinator (coupled model) or a
simulator (atomic model).
Method 'linkToParent:' is used instead of 'initialize' described by Zeigler p. 66.
Instance variables:

clock <Simulation Time> -the current global clock

child <Processors> -the single child processor-
coordinator or simulator. We
use this for convenience, rather
than 'childProcessrs first'

timeLimit <Simulation Time> -the time at which a simulation
run is to stop

mode <Symbol> -the current mode:

#idle - not yet run or completed
#running - run in progress

#suspended- run suspended
#stepping - running a single step

processes <Set> -the set of processes created.
Each run requires the creation

of a process. This process is
terminated when an instance

is released, usually when the
window is closed via method

'changeRequest'.

modeSemaphore <Semaphore> - Used for mutually exclusive ac-

cess to mode
controlSemaphore <Semaphore> -Used to control each iteration

of a run

I
I
I

1 7

I
I

U name
parent
devsComponeniI chsddProcessors
time OfLastEvent
tizmeOfNextEventI tastReceivedMessage
IastSeniMessage
clock
childI startTime
timeLimit
modeU traceText
run View
processes
modeSemaphore

controlSemaphore
accessing child

clock

clock:
startTime
startTime:
timeLirnit:

changing change Request

DEVS hnkToParent:
restart
rest artA 1:
restartAt:andRunFor:
simulate

yMessage:
displaying state
initialize-release initialize

releaseI ~operating gopas

reset
resume
run
step

printing prinfOn:

print St ring

3 78

I
I

private-accessing chzld:
lastReceivedMessage:
lasiSenitfes.sage:
paren t:processors

timeOfLastEvent:

time OfNextEvent:
private-logging tog:

logRecelpt:
logSend:to:
log Time:

private-synchronizing mode

vesmode:views vie__w

instance creation 1st
new

logging access isLogging

logStream:
teXFormat:

I
I
I
I
I
I
I

I 79

I
I
I

Entities subclass: Models

Models is the root class for a DEVS model. [Note that 'Model' is already a class
in the library.]
Class variables:

None.
Instance variables:

processor <Processors> -The processor associated with
this model instance.

inport <Collection> -IThe input port designations.
outport <Collection> -The output port designations.

pixmap <Pixmap> -A pizmap that represents the

current state.

In addition, sigma is the time left in the current phase.

Each subclass should initialize the input and output port designations for each

instance. This class requires protocols for 'initialize' and 'restart'. The distinc-
tion is:

initialize Initialize those components of the instance that are
fixed at creation, normally the input and output
port names and perhaps defaults for graphical com-

ponents. Note: a method 'initP -ts'is required for
initializing port names.

restart Initialize those components of the instance that
define the state of the model at the start of a

nm simulation.

name

parent
processor
inport
outport
pixmap

accessing inport
outport
processor
processor:

DEVS restart

displaying state

80

I
I

initialize- release extent:
intialize

port creation
initPorts

printing prrntOn:
priniString

private baseVisualComponent
inport:outport:

private-accessing name:
parent
parent:
teXName

private-logging isLogging
views view

instance creation new
logging access isLogging

IogSiream:

3 teXFormat:

8
I
I
I
I
I
I

I

I

I

I
I

Models subclass: CoupledModels

1 A coupled model is an abstract class that embodies hierarchical model composi-
tion (see Zeigler pp. 59ff).
Instance variables:

children <Collection> -the list of component models
receivers <Collection> -associates an input port of my

model with my children who are

connected to it. This is main-

tained by my subclasses.
influencees <Collection> -connections between compo-

nent output ports and input

ports. Each component is a
coupling.

priorityList < OrderedCollection>-used to break ties resulting from
two children having the same
time to next event. The first
child in this list has highest prz-

ority. The select function (p.
56) uses this list.

* name
parent
processor
inport
outport
pixmap
receivers
influencees
priorityList

accessing getChildren

getInfluencees:
getReceivers:
influencees:

priorityLIst.
receivers:
select:
translate

DEVS restart

I

I

U
I

displaying state
initialize- relea.;e extent:

initialize
intPorts

port creation
printing printOn:

private base VisualComponent

inport:
outport:

private-accessing name:
parent
parent:

teXName

private-logging isLogging
views view

U instance creation makePair:
.logging access isLogging

LogStream:
teXFormat:

8I
I
I
I
I
I
I 83

I
I
I

I

I

3 CoupledModels subclass:

DigraphiModels

I
Digraph models are coupled models containing a heterogeneous mixture of chil-
dren and/or non-regular couplings between children (see Zeigler, chapter .5).
Instance variables:

compostion Tree < Composition Tree> -defines the component models
influenceDigraph <DirectedGraph> -defines which children influ-

ence others, i.e. whose outputs
affect whose inputs.

selectFn <BlockContert> -a block having one parame-

ter, an ordered collection from
which it answers the next im-
mmnent child to be selected. If
this variable is nzl. then prior-
ityList is used.

name
parent
processor
inport
outport

UPimap
receivers
influencees
priorityList

compositionTree
influenceDigraph

select.Fn

accessing getChildren
getInfluencees:
getReceivers:
influencees:
prtorityList:

receivers:
select:
translate

84

D EVS addCoiipie:port :coiir tctedio'k. orL
buildCorrnposi tion'Tree:

comnposi tio nfree
connect: o:
getCh ,ldren
getinfluencees:
getReceivers:
select:
select Fn:I ~setExtlnpCoup~conziect: to.
setExtOutCoup: con nec t: to:
set lntCoup : port Namne: to: port Name:
specifyChild ren:
translate: model:

displaying state
initialize- release extent:U initialize

initPorlts
port creationI
printing printi~n:

prinfSt ring
private base VisualComponeni

inpo rt:
out port:

private-accessing name:
parent
parent:

private-logging isLogging

views view

Iinstance creation new:
logging access zsLogging

logSt ream:

icXUorma 1:

* 85

Digraph.Modtck subc0ai~i

.4 dynamnic digraph movdel is a d9,iantic mnodrl tit uhich thr c,,mp.un eryn'a

can be created and de~stroyed dluring i simulaftun ruiti 'he dynaynics rf. qi,

close cooperation with the coordinator Ujttiched L? to twiut'jncr uhi~g !rtts~l tr

an instance of DynarmcCuordinator

Note that this class has nut been implemented

name
parent
processor

in port
out port

plrmap
receivers

compostition Tree
i nfluenceD: graph

seleciFn

access-dynanlic add(-hiddINodcL,IaddCh ild.%Iodel: wi t it E:xit na I ni
(Couplinigs: withI Extern:al(LJI)i t pu-
(7ouplings:W1ithlnternaIk~jins

accessing ge~htildren

influencees:
priorityList:
receivers:

sIelect:I translate

DEVS addCouple~port covunrarttTu p,,r-
buildCornpo.sitsun Tree,I ~comnposition Tref
Connect :o.
get C1 uldreni

yetinfiueiieecs:

sielectFn:I setEzifnpCc up:connect to:
sielEziOutCotup:conneel: to:
setInICoup:portiarne to porIA'arnt:

specifyChitdren:

displaying state
initialize- release extent:

init Ports
port creationI
printing prnnt n:

print String
private base VisualComponeni

inpori:

p rivate- accessing name:
parent
parent:

private-logging isLogging

views view

Iinstance creation new:
logging access isLogging

iogSt ream:

teXFormal:

* 87

I
I

Models subclass:
At omicModel

I An instance of class AtomicModel represents a specific atomic model. Protocol
provided for the object corresponds to the DEVS protocol for atomic models.
This implementation varies from Zeigler's in that we use instance varzablts to
hold that state rather than a single variable s.
Instance Variables:

x <Content> -external input causing thi•.
event

< Content> -most recently generated content
for output

sigma <Duration> -time remaining (tn minutes) to
the next internal event

phase <Symbol> -the current phase (state)

e <Duration> -elapsed time in the current
phas.

name
parent
processor
inport
outport
pzxmap
x
Y
sigma
phase
e
accessing e

e:
phase
phase:
sigma
sigma:

x:

y

* 88

I
I
I

DEYS extTransFn.-externallIitput:
extTransition
intTranst'n
intTransition
outputEh
outputFn
restart
timeAdvanceEla
timeAdvancefn

displaying status
initialize-release extent:

initialize
initPorts

macros continue

inj ect: val ue:eiapsedTinle:
no~utput
passivate
passivatein:

port creation Iedtoot
printing priniOn:

prinltfringIprivate base VisualComponent
in port:
outport:

private-accessing name:I parent
parent:
ieXName

private-logging IogExtTransFn
Ioglnt'rransition:
IogOutputEh:I views ogjimeAdvanceEh:

instance creation makePair:

logging access isLogging

logSt ream:
IeXFormnat:

* 89

I
I
l

N Appendix BI
Application Class
Specifications

Specifications for application classes are provided in this appendix. These classes
are in the CliP Category in the image stS0-C.IP.

The classes in the application comprj..,ent of CUIP are subclasses of DEVS classes3 and are shown in boldface:

9
I
I
I
I
I •

I
I
I

I

Entities [68]
Models [80]

AtomicModel [88]
Dispatcher [1031
Equipment (108]

CuttingMachine [114]
AutomaticCutter [1161

BITECutter [1201
LaserCutter [118]

ManualCutter [122]
SpreadingMachine [130]

AutomaticSpreader [132]
Table [124]

CuttingTable [128]
SpreadingTable [126]

Planner [99]
CoupledModels [82]

DigraphModels [84]

DynamicDigraphModels [86]
Room [92]

CuttingRoom [96]
Warehouse [94]

Processors [69]

Coordinator [73]
DynamicCoordinator [75]

RootCoordinator [77]
Simulators [71]

The format corresponds to that described in Appendix A.I
I
i

319

I

I

I

5 DigraphModels subclass: Room

A Room is a component of a plant.
Instance Variables:

equipment -the equipment in this room.
layout -the layout of the room-a de-

scription of the room's size and
shape and the location of each
piece of equipment in the room.

I name
parent
processor
inport
outport
pixmap3 receivers
influencees
priorityList
composition Tree
influenceDigraph
selectFn
accessing getChildren

getInfluencees:
getReceivers:
influencees:

priorityList:
receivers:
select:

translate

9
I

* 9

!
I

DEVS addCouple:port: con n ededTo:port:
buzid~om position Tree:
composiiion Tree
co nnect : o:

getChiidrenI ~get Influencees:
getReceivers:
select:
select Fn:

s e tExtlnp Co up: con nect: to:
se tEzi Out Coup:conn ect: to:
setlntCoup:portName:to:poriNanie:'I specifyCh:idreiz:
transtate:model:

displaying state
initialize-release extent:I initialize

init~orts
port creationI5 printing prmnt On:

printString
private base VisualComponent

in port:I ~out po rt:
private-accessing name:

parent
parent:I "cXiVame

private-lo~gging isLogging
views view

Iinstance creation new:
logging access isLogging

logSt ream:

ieXFormat:

1 93

I
I
5 Room subclass: Warehouse

A Warehouse is that portion of a plant that is responsible for receizvng materials,
maintaining stored items, and delivering materials to organizations both inside3 and outside the plant.

name
parent
processor
inport
outport
pixmap
receivers
influencees
priorityList

compositionTree
influenceDigraph
selectFn

accessing getChildren

getInfluencees:
getReceivers:
influencees:
priorit!,List:
receivers:

select:
translate

3
I
I

I

I
I

DEVS a ddCoup le:port: co nnecied To:po rt:
bujid~om position Tree:I ~cornposition Tree
connect :to:
get Children
getlnfluencees:

getReceivers:
select:
select Fn:I ~setExtlnpCoup:connect~o:
setErt Out Coup: con nect: to:
selIn tCoup:portNa me:to:por Na ine:
specifyClztldren:
translaie:model:

displaying state
initialize-release extent:

s i nitialize
initPorts

port creation3printing pri .nt On:
print St ring

private base VisualComponent
in port:

private-accessing name:
parent
parent:

privae-loging eXName
privae-loging sLogging

views view

Iinstance creation new:
logging access isLogging

logSt ream:

teXFormat:

1 95

I
I
I Room subclass: CuttingRoom

1 A CuttingRoom is a facility comprising the resources needed to cut fabrc.: equip-
ment, operators, and materials. An instance is a digraph model that comprises
a planner, a dispatcher for operators, a dispatcher for materials, and equipment
such as spreaders and cutters.
The relationships between the various pieces of equipment must be specified ex-
plicitly. The relationships between the planner and dispatchers are defined au-
tomatically at instance cre-tion.
Instance Variables:

oscar < .nner> -A planner that oversees execu-
tion of a plan. The plan desig-
nates how resources are routed
to equipmet for various tasks.

The planner com-
ponent is named after Oscar
Estes, the cutting room man-

ager at Jantzen in Seneca, SC,
who helped us with this project.

breakArea <Dispatcher> -A dispatcher of the operators in
the cutting room. An operator
is always routed to the model
for the equipment to which he
is next assigned. When an op-

erator is off-duty, then he is
routed back to the dispatcher.

dropArea <Dispatcher> -A dispatcher of the materials in
the cutting room. An material
is always routed to the model
for the equipment to which it is
next used.

equipments <Set> -The equipment available for

use in the cutting room.

Testing:
"instance creation test.."

I cuttingRoom el e2 equipment huey dewey louie operators materials I
el := Equipment makePair: 'El'.
e2 Equipment makePair: 'E2'.

equipment := OrderedCollection with: el with: e2.

* 96

I

I

I
1

huey := Operator new name: 'Huey'.
dewey := Operator new name: 'Dewey'.
louie Operator new name: 'Louie'.
operators := Set with: huey with: de,"ey with: louie.
materials := Set with: (Material new).

cuttingRoom := CuttingRoom makePa:r: 'Test CR' containing: equipment
operators: operators materials: materials.

cuttingRoom

I name
parent
processor
inport

outport
pizxmap
receivers
influencees
priorityList
composition Tree
influence Digraph
selectFn
oscar
breakArea
dropArea
equipments
plan

accessing breakArea
dropArea
equipment
oscar
plan:

DEVS restait
displaying Af

initialize-release containing:operators: materials:
initPorts

port creation I
printing printOn:

priniString
private base VisualComponent

inport:
outport:

I

I
I
I

private-accessing tename:

private-logging isLoggtng3views view

instance creation makePair:conrtai nin g:operators: mate rlals:
logging access i :sLoggingI ~logSt ream:

ieXFormnal:

I9

Ato inicModel subclass:
Planner

S.A planner is a model that distributes a plan to other models. The plan is -pecified
before simulation begins. A planner has N output ports, labeled #planl, #plan2,
... planN that can be used to connect to other models. The value of N is specified
on instantiation and may not be changed.

I~ Plresuet

doneLreut1

I ~plan1 •

start -0plan2I

planN

I A planner also tracks the completion of work assignments in the plan. .A work
assignment arriving on the #done port is logged as completed as of the time
4f its arrival. When all work assignments are completed, then the plan and
statistics are emitted on the #result port.

A planner has (N+2) states, numbered 0 through (N+I). State 0 indicates that
no plan has yet been received. State I (1 <= I <= N) indicates the plan is to
be output on port #planL. State (N+1) is a tracking state in which information
about completed tasks arriving on the #done input port is recorded.

The output ports are represented by an array collection so that the names can
be matched with states-the first element is #planl, the second #plan2, and so
on.

I
I
i

state vartables:
sigma = infinity .. nothing happens until a plan ar-tite (on #ta rt

phase = 0 .. sgnzfies that a plan has not yet ar-rird
plan = nill

external transition function:
case input-port

start: store plan

hold in I for 0
done: record task completion

continue
else

error

internal transition function:
case phase

2:

N: #tracking

output function:
if (phase #tracking)

send plan to port #plan(phase)

- ----------------- -Instance variables:
plan <Plan> -the plan to be dispersed

n <Integer> -the number of output ports. it-

cluding #result
results <Statistics> -the statistics associated witth

the plan

port <Symbol> -the name of the port to uwhich

the plan should be sent, nil if
none.

100

Testing:
Planner makePair: 'Test Planner' outportCount: 3

"The following is a stand-alone test of this model (see pp. 82ff"

"Inspect p after each of the statements below to perform the test."

I p plan wal wa2 wa3 I
p := Planner new: 'Planner'.
p outportCount: 3.

plan := Plan new.
wal WorkAssIgnment new.
wa2 := WorkAssignment new.
wa3 : WorkAssignment new.

plan add: wal; add: wa2; add: wa3.
p plan: plan.p restart. self halt.

p intTransition.
p outputEh. "(#planl, plan)"
p intTransdtion. "state: (sigma = 0, phase = 2, plan = plan

x = (#start, plan), y = (#planl, plan)"
p outputEh. "(#plan2, plan)"
p itnTransition.
p outputEh. "(#plan3. plan)"

p intTransition.

p inject: #done value: wal elapsedTime: 1.
p inject: #done value: wa2 elapsedTime: 2.

p inject: #done value: wa3 elapsedTime: 3.

name
parent
processor
inport
outport

pizmap
x
y
sigma
phase

e
plan
n
results

1
5 101

accessing outportNumber:
plan
plan:

DEVS ezrtTransFn:exte rnallnpu t:

displaying s~tratus n

5initialize-release initPorts

macroscontinue
holdIn.-forTime:I znject:value:
inject: valu e:e lapsed Time:
no Output3 passivaie
pass zvaleln:
send:toPort:

port creation
printing print On:

private base VisualComponent

I ~out port:
private-accessing name:

parent
pare nt:

private-logging logExt TransFn

loglnt Transition:I ~logOutputEli:
log TimeA dvanceEh:

views view

U instance creation makePairvoutportCount:
logging access isLogging

logSt ream:I ~teXForm at:

3 102

AtomicModel subclass: Dispatcher

A Dispatcher is a model component that manages a pool of resources, dispatching
a resource to another model in accordance with some plan. A dispatcher has 2
input ports, #plan and #in, and N output ports: #outl, #out2, ... , #outN.
Port #plan is an input port on which a plan is to be received that drives the
routing of resources to and from the dispatcher. Resources arrive on port #in
and are dispatched to other models on an #out* port.

tDispatcher]}
j plan 1

plan

plan2

planN

Each output port is assumed to be routed to one model. The association between
model and output port is 3tornd in a dictionary (mappingDictionary) and is
established at instance creatio:. using the models provided. For example, if the
models are (ml m2), then an association between #outl and ml and between
#out2 and m2 is made. When t resource armves on #in, and the plan reflects
that the resource should be rozaed next to ml, then the resource is output on
#outl based on the dictionary association of ml and #outl. Care must be
taken to preserve correct routing in the model-that is, that connections are
correct.

Every resource must be able to answer the message 'whereNext: aPlan' with the
next work assignment the resource is called for. An answer of nil de7i,'i.ates that
the resource has no more uses within the plan. In determining the next model,
a resource may safely assume that first work assignment for it in the plan is the
next to be performed.

Instance variables:

103

I
I

plan <Plan> -The plan against which re-
sources are dispatched,

mappingDictionary <Dictionary> -A dictionary whose keys are
workstations and whose values
are output port names. This

is used to route resources to

a workstation as given in the
plan.

resources <Set> -A set of the resources that have
not yet been dispatched, either
because they have no work des-

ignated to be done or because

they are not available at the

current time.

readyResources <RoutingTable> -The resources that are ready
for dispatching, keyed by the
model that is the destination.

doneResvurces <Resource Coilection>-Resources not needed any fur.
ther in the plan

I
I
I
I
I
I
I

3 104

I
II

II

Testing:
"The following is a stand-alone test of this model (see pp. 82ff),"
"Inspect dispatcher after each of the statements below to perform the test."

I models resources plan wal wa2 wa3 ol o2 o3 el e2 dispatcher[

ol := Operator new name: 'ol'; yourself.
o2 := Operator new name: 'o2'; yourself.
o3 :- Operator new name: 'o3'; yourself.

el := Equipment new name: 'el'; yourself.

e2 Fquipment new name: 'e2'; yourself.

plan := Plan new.
plan startTime: (SimulationTime date: (Date today) time: (Time now)).

wal := WorkAssignment workstation: (Workstation at: el) operators: (Set
with: ol) task: nil.

wa2 := WorkAssignment workstation: (Workstation at: e2) operators: (Set
with: o2) task: nil.

wa3 := WorkAssignment workstation: (Workstation at: el) operators: (Set

with: o3) task: nil.
plan add: wal; add: wa2; add: wa3.

models := OrderedCollection with: el with: e2.
resources := OrderedCollection with: ol with: o2 with: of.
dispatcher := Dispatcher makePair: 'Big D' forModels: models forRe-

sources: resources.

dispatcher initialize.
dispatcher inject: #plan value: plan elapsedTime: 0.
dispatcher intTransition.
dispatcher outputEh.
dispatcher intTransition.

dispatcher outputEh.
dispatcher

dispatcher inject: #in value: plan elapsedTime: 0.

10

* 105

name

3 processor
inport
out port
Pixinap

sigma3 ~phase
e
plan
mappingDictionaryI resources
readyResources
doneResources

* clock
accessing doneResources

outportNumber:
portFor:I ~ready Resources
resources

DEVS ezt TransFn:externalln puf:
intTransFn1outpuf

displaying status
initialize- release forModels forResources:

; .niiPorts
macros continue3 holdln.-forTime:

inject:value:
inject: value: elapsed Time:
no utput
passivate
passivateln.:

send~toPort:
operating check ResourcesI wakeup
port creation?
printing prini~n:I private base VisualComnponent

in port:
out port:

3 106

I

private-accessing name:
i parent

parent:
teXName

private-logging logEzt TransFn
SlogIntTrausition:
logOutputEh:
log TimeAdvanceEh:

views view

instance creation forModels:forResources:
makePair:forModels: for Resources:

logging access isLogging
logStream:I ieXFormat:

1
I
I
3

5- 107

i

I]

Im

U
I
3 AtomicModel subclass:

1 Equipment is any piece of machinery.
[Equipment Idn

Iplan

I product

optrin

optrOut

marin
rnatOut

Equipment has behavior such that if it has a work assignment in the plan that
is still "to do", and sufficient resources and operators are available to perform
the work assignment, and the workstation for the assignmant is available, then
work on the task is begun. Upon completion of a work assignment, statistics
are emitted on the #done port, the product is emitted on the #product port, the
operator(s) who performed the task are emitted on the #optrOut port, and the
collection of materials (what's left of them) is emitted on the #matlOut port.

Every piece of equipment comprises a set of workstations. For this class, only
one workstation can be active at a time. (See subclasses for equipment that can5 support multiple active workstations.)

Each piece of equipment has a wait area at which idle operators and materials
wait for the start of a task specified in a work assignment. The wait area is
represented by instance variables 'waitingOperators' and 'waitingMaterials'.

When a resource arrives at equipment, it is put in the wait area and then a
check is made to see if a work assignment can be started based on the presence
of all required resources in the wait area and the availability of the workstation
specified. The current implementation insists that work assignments be started
in their order in the plan. When a work assignment is started, eligible operators
not selected for the task are emitted on the #optrOut port. [A work assignment
may specify a task to be performed by any one of a set of operators.]
Equipment has the following phases and transitions:

3 #passive =>

5 108

I
I

U
I

#working =>

#done => [emit .tatistics]
#product => [emit product]
#optrOut => [emit busyOperators]
#matlOut => [emit bus yMaierials .75s(back to #passive or #working)

Instance Variables:

I
I
I
I
I
I

I
U

I
I
5 109

I
I

I

I
I

location -the location of the equipment
on the shop floor.

name -the descriptive name for this
equipment.

number -the identification number as-
signed to this equipment.

status -an indication of whether the
equipment is operable or avail-
able for work or not.

manufacturer -the equipment manufacturer.

serialNumber -the serial number for this piece
ofequipment.

I
(Simulation-related

entities:)

clock -the (global) simulation time
plan -the current plan under simu-

lation (a shallow copy of the
original)

toDo -the portion of the plan for this
piece of equipmenl that is not
yet started.

startClock -the value of clock when work on
the current task started.

current WorkAssignment -the current work assignment
busy Workstations -the workstations currently ac-

tive for this piece of equip-
ment. This is a sorted col-

lection, ordered by increa~zng
time to next work assignntizl

completion. An instance will
have at most one busy worksta-
tion, but subclasses might have
more.

busyOperators -a collection of operators busy at
this equipment.

busyMaterials -- a collection of materials in use

at this equipment.

waitingOperators -a collection of operators wait-
ing for workstation availability.

waitingMaterials -a collection of materials wait-

ing for workstation availability.
product -the product of the most recently

completed task.
statistics -statistics for the most recently

completed work assignment

I 110

I
I
I

I
I

The methods in category DEVS default to model a piece of equipment that takes 5
minutes to do any task. The product is a string of the form 'Product <time>',
where <time> designates the simulation time at which the product was com-

pleted.

Testing:

I plan wal wa2 wa3 ol o2 o3 equipment

ol := Operator new name: 'o1'; yourself.
o2 : Operator new name: 'o2'; yourself.
o3 := Operator new name: 'o3'; yourself.

equipment := Equipment new name: 'E; yourself.

plan := Plan new.
plan startTime: (SimulationTime date: (Date today) time: (Time now)).
wal := WorkAssignment workstation: (Workstation at: equipment) oper-

ators: (Set with: o1) task: nil.
wa2 := WorkAssignment workstation: (Workstation at: equipment) oper-

ators: (Set with: o2) task: nil.
wa3 := WorkAssignment workstation: (Workstation at: equipment) oper-

ators: (Set with: o3) task: nil.
plan add: wal; add: wa2; add: wa3.

equipment restart.

equipment inject: #plan value: plan elapsedTime: 0.
equipment inject: #optrIn value: ol elapsedTime: 0.
equipment MtiTransition.
equipment outputEh.
equipment intTransition.
equipment outputEh.

equipment

equipment inject: #in value: plan elapsedTime: 0.

I
I
I
I l

I
I
I

1

I name
parent
processor
inport
outport
pixmap

Y

sigma
phase
e
location5 description
number
status
manufacturer
serialNumber
clock
plan
startClock
toDo
currentWorkAssignment
busyWorkstations
waitingOperators
waitingMaterials
product
statistics
accessing busyWorkstations

description
description:
location
manufacturer
moveTo:
number
serialNumber
waitingMaterials
waitingOperators

DEVS ext TransFn:ezteruallnput:
int TransFn
outputFn
restart

displaying status
initialize-release initPorts

I
5 112

I
I
I

I
I

macros continue
holdlnforTime:
znject:v" 'i•z:

inject:.value:elapsedTi n :

noOutput
passivate
passtvateln:
send:ioPort:

port creation I
printing pnitOn:

private check
plan:
start:on:by:using:

private- accessing name:
parent
parent:
teXName

private-logging IogEzt TransFn
logInt Transition:
logOutputEh:
logTimeAdvanceEh:

views vew__

instance creation makePair:new:
logging access isLogging

logStream:
teXFormat:

I
I
I
I
I
I11

11

1
I

Equipment subclass. Cuttinig Nachuw

A CuittngMachzne is a machine used to cut fabric.
Instance Variables:

fabrics -lte fabrics that anr bc (Ut by
this machine.

mnaximumCuttzngDepth -the marimurm euttuiq drpth

Class Variables:

name
parent
processor
inport
outpori
pixmap

x

sigma
phase

e
locatkon
description
numnber

status
manufacturer
sertalNumber
clock

plan
startClock
toDo
current WorkAssignment
busy Workstations
wastingOperators
wailingMaterials
product
statistics
fabrics
maximumCuttingDepth

114

I

I
I

I
I

accessing fabrics
fabrics:
maximuixiC u ttin g Depth
inaximurnCuttingDepth:

DEVS ext TransFn.ezternallnput:
intTransFn

outputFn
restart

displaying status

initialize-release nPorts
macros continue

hoidln:forTime:

inject:value.Inject:value: elapsed Ti•it.
noOutput
passivate
passivate n:
send:toPort:

port creation
printing pnntOn:
private check

plan:

start:on:by:using:
private-accessing name:

parent
parent:
teXName

private-logging logExtTransFn
logintTranshton:
logOutputEh:
logTimeAdvanceEh:

views view

instance creation makePair:
new:

logging access isLogging
logStream:
iteXFormat:

I
I

S~115

I
I

I
I
3 CuttingMachine subclass:

AutomaticCutter

U An AutomaticCutter is a cutter whose blade is under computer control.

3 name
parent
processor
inport
outport
pizxmap

y
sigma
phase
C
location
description
number
status
manufacturer

serialNumber
clock
plan
startClock
toDo
current WorkAssignment
busy Workstations
waitingOperators
waitingMaterials
product
statistics
fabrics
maximumCuttingDepth

accessing fabrics
fabrics:
maIimumCuttingDepth
mazimumCuttingDepth:

I
I 116

I
I.
I

I
I

DEVS extTrans Fn:externallnput:
l ntfTransFn
outputFn
restart

displaying status
initialize- release initPoris
macros continue

holdIn:forTime:
injecf:value:
inject:value: elapsed Time:
noOu1put
passivateI passivaieln:

send:to Port:
port creation
printing printOn:
private check

plan:
start:on:by:using:

private-accessing name:
parent
parent:
teXName

private-logging logExt TransFn
loglnt Transition:
logOuiputEh:
logTimeAdvanceEh:

views view

instance creation makePair:
new:

logging access isLogging
logStream:
teXFormat:

1
I
I
* 117

I
I
I

I
U
3 AutomaticCutter subclass: L aerCutter

U A LaserCutter is a cutter in which a laser beam is used to cut fabric.

3 fname
parent
processor
Inport
outport
pixrnap
x

Y
sigma

phase
e
location
description
number
status
manufacturer
serialNumber
clock
plan
startClock
toDo
current WorkAssignment
busy Workstations
waitingOperators
waitingMaterials
product
statistics
fabrics
maximum CuttingDepth

accessing fabrics
fabrics:
max:mumCuttingDepth
maxzimumCuttzngDepth:

I
I 118

I
I
I

I
I

DEVS extTransFn:externallnput:
intiTransFn

outputFn
restart

displaying status
initialize-release irntPorts
macros continue

holdIn:forTime:

inject:value:
inject:value:elapsedTime:
noOutput
passivate
passivateIn:
send:toPorl:

port creation

printing printOn:
private check

plan:
start:on:by:using:

private-accessing name:
parent
parent:
teXName

private-logging logExt TransFn
logInt Transition:
iogOutp-t Eh:

logTimeAdvanceEh:views vie w

instance creation makePair:
new:

logging access isLogging
IogStream:
teXFormat:I

I
I
I

I 119

I
I
I

1
I

AutomaticCutter subclass:
BITECutter

I A BITECutter is an automatic cutter that has a cutting blade mounted on a
mechanism that allows the blade to be moved to any point in an X- Y coordinate
system. The blade is controlled by digital data that represents a marker. The
length of a spread to be cut may be longer than the table for the cutter.

name
parent
processor
i inport
outport
pizmap
x

y
sigma
phase
e
location
description
number
status
manufacturer
serialNumber
clock
plan
startClock
toDo
current WorkAssignment
busy Workstations
waitingOperators
waitingMaterials
product
statistics
fabrics
maximumCuttingDeplh

I

I
I
I

I
I

accessing fabrics
fabrics:
maIimumCuttingDepih
maxzimumCuttingDepth:

DEVS et Trans Fn:externallnput:
int TransFn
outputFn
restart

displaying status
initialize-release initPorts
macros continue

holdln:forTime:

inject:value:

inject:value:elapsedTime:

noOutput
passivate
passivateIn:
send:toPort:

port creation
printing printOn:
private check

plan:
start: on:by:using:

private-accessing name:
parent
parent:
teXName

private-logging logEztTransFn
logInt Transition.
logOutputEh:

log TimeAdvanceEh:
views view

instance creation makePair:
new:

logging access isLogging
logStream:
teXFormat:

1
I

I 121

I
I
I

I
I

CuttingMachine subclass:

ManualC utter

I A ManualCutter is a cutter whose path is controlled completely by an operator.

name
parent

processor
inport
outport
pizmap
x

sigma
phase

location
description
number
status
manufacturer

serialNumber
clock
plan
startClock
toDo
current WorkAssignment
busy Workstations
waitingOperators
waitingMaterials
product
statistics
fabrics
maximum CuttingDepth

accessing fabrics
fabrics:
maximumCultingDepth
maximumCuttingDepth:

I
5 122

I
I
I

I
I

DEVS ext TransFn: ezt ernallnput:
iinTransFn
outputFn
restart

displaying status
initialize-release tnstPorts
macros continue

holdlnsforTime:

inject:value:
inject:value:elapsed Time.
noOutput
passivate
passivateln:
send:toPort:

port creation I

printing printOn:
private check

plan:
start:on:by:using:

private-accessing name:
parent
parent:
teXName

private-logging logErt TransFn
loglnt Transition:

logOutputEh:
0lo TimeAdvanceEh:

views "nlew

instance creation makePair:
new:

logging access zsLogging
logStream:

i teXFormat:

I
I
I

I 123

I
I
I

I
I

Equipment subclass: Table

1 A Table is a raised, flat, rectangular surface.
Instance Variables:

height -the height of this table.
length -the length of this table.
width -the width of th1s table.

3 Class Variables:

location
description
number
status
manufacturer
serialNumber
clock

plan
startClock
toDo
current WorkAssignment
busy Workstations
waitingOperators
waitingMaterials
product
statistics
height
length
width

accessing height
lengthSwidth

DEVS extTransFn:externallnput:
intTransFn
outputFn
restart

initialize-release initPorts

printing print On:

I
1 124

I
I
I

I
U

private check
plan:
start:on:by:using:

views view

3 :ustance creation height:width:height:

1
I
I
I
I
I
I
I
I
I
1
3 125

I
It

I

£
I

Table subclass:
SpreadingTable

A SpreadingTable is a table on which fabric is spread, either manually or by
using an automatic spreader.
Instance Variables.
Class Variables:

location
description
number
status
manufacturer
serialNumber
clock

plan
startClock
toDo
current WorkAssignment
busy Worksl ations
waitingOperators
waitingMaterials

product
statistics
height
length
width
accessing height

length
Iwidth

DEVS ext TransFn:ezternallnput:
int TransFn
outputFn
restart

initialize-release initPorts
printing printOn:
private check

plan:
siart:on:by:using:

views view

3 126

I
li
i

I
I

Iinstance creation he~ght:width.'heighl:

I
I
I
I

1

I
I 2

l
I
I

I
I

3T able sub cJ~ss. C uttingT able

I A CuttvnIn able is a table oin which fabric i• cut. ezther- ranulia! ,, ýIYuN,• 1t-

cally.
Instance Vyariaables:

cutters --the .ollhctz n u'! itt r, thlt

3 Class Variables:

location
description
number
status
manufacturer
serialNuMber
clock
planS~startClock

toDo
current WorkAssignment
busy Workstations
waiiingOperators

wazixngMaaterials
product

statistics
height
length
width

cutters

accessing height
length
width

DEVS er1 TransFn:ezternalln put
intTransFn
outputFn
restart

initialize- release nii Ports

printing printOn.

5 128

U
I
I

private check
plan:
start:on:by:.using:

TBS cutters
cutters:

views view

instance creation heighi:width:hezghlt:

129

I
I

Equipment subclass: Spreading T1achin e

A spreading machine is a piece of equipment used for spreading The model hastwo

Instance Variables:
mountedRolls -a dictionary of the mounted

rolls. The key is some deszg.

nation of a mount.
weightLzmits -the maxzimum weight that a roll

mount can support, in pounds.
sizeLtmits -the maximum roll diameter5that a roll mount can hold.

The last two attributes are ignored in this implementation.3 Class Variables:

location
description
number
status
manufacturer

serialNumber
clock
plan
startClock
toDo
current WorkAssignment
busy Workstations
waitingOperators
waitingMaterials
product
statistics

mountSymbols
mounted Rolls
weightLimits

sizeLimits
spreadRates
return Rate

i
5 130

I
1

accessing mountSymbols
returnRate
returnRate:
spreadRates:

DEYS ext TransFn:exiernalln pu i:
int TransFn

outputFn
rest arat

initialization-release in itial ize:wei gh tL nits:s ze Li mits:s pread Ra o~s.
initialize- release initPortsIoperating clearOut

mount:
mount:on:I remove:
removeRoll:
respondTo:
spread RateFor:

printing printOn:
private check

plan:I start:on:byuusing:
views view

instance creation new:I new:spread Rates:
new: weight Limits:size Limi ts:sp read Rates:

13

I
I

SpreadingMachine subclass:

AutomaticSpreader

U An AutomaticSpreader is a machine that can be attached to a spreadzng table
and used to spread fabric. Fabric (in rolls or other form) are attached to the
spreader. The spreader then spreads the fabrc in a single ply.
Instance Variables:
Class Variables:

I location
description
number
status
manufacturer
serialNumber
clock
plan
startClock
toDo
current WorkAssignment
busy Workstations
waitingOperators
waitingMaterials
product
statistics
mouniSymbols
mountedRolls
weightLimits
sizeLimits
spreadRates
returnRate
accessing mountSymbols

returnRate
returnRate:
spreadRates:

DEVS extTransFn:ezternalInput:
intTransFn
outputFn
restart

initializat ion- release initialize:weightL imats:sz.e L mz ts:spreadRa tcs;

I 132

U
I

Ii

I
I

initialize-release ait Ports
operating clearOut

mount:
mount:on:
remove:

removeRoll:
respondTo:
spreadRateFor:

printing printOn:
private check

plan:

sctar:on:by:ussng:
views view

instance creation new:

new:spreadRates:
new:weightL mzis:s~zeLimzts:spreadRates:

1I
I
I
I
I
1

i
5 133

i

I
I
I

N Appendix CU
Test Class Specifications

The classes whose specifications appear in this appendix are used for testing-
They correspond to the generator, transducer, and simple processor models
described by Zeigler. Not only are these classes useful for testing, they are also
useful as a model for writing application classes.

The classes in the testing component of CUIP are subclasses of DEVS classes
and are shown in boldface:

Entities [681
Models [80]

AtomicModel [88]
GeneratorModels [135]
SimpleProcessorModel [139]1TransducerModels [137]

CoupledModels [82]
DigraphModels [84]

Processors [69]

Coordinator [73]
RootCoordinator [77]
Simulators [711

The format corresponds to that described in Appendix A.

The end of this appendix provides text that can be used to run a simulation
(see Section 3.5).

I
5 134

U
I
I

U
I
3 AtomicModel subclass: Generatoriodels

U This class implements the model described by Zeigler in secton 5.1.1.

Instance variables:
nextJobNumber
interarrIvalTime

3 name

parent
processor
inport
outport
pixmap
x
y
sigma
phase
e
nextJobNumber
interarrivalTime

accessing interarrivalTime
interarrivalTime:

DEVS extTransFn:ezternallnput:
intTransFn
outputFn
restart

displaying status

initialize-release initPorts
macros continue

holdln:forTime:
inject:value:
inject:value:elapsed Time:

noOutput
passivate

passivateIn:
send~toPort:

port creation I

printing printOn:

3 printString

5 135

I
I
I

private base VisualComponeni
inport:

private-accessing nextJobName
nextJobNumber
nextJobNumber:

private-logging logExi TransFn
logInt Transition:

logOutputEh:
log TimeAdvanceElz:

views view

instance creation makePair:interarrivalfirne:

new:
new: interarrivalTi me:

logging access isLogging
logSt ream:

teXFormai:

13

I
I
3 AtomicModel subclass: TransducerIodels

3 This class implements the models described by Ze:gler in section 5, 1.2.

Instance variables:
observationInterval
arrivedList
solvedList
clock <Duration> -Total time elapr'd in the run
totalTa

name
parent
processor
in port
outport
pizmap
x
y
sigma
phase
e
observationInterval
arrivedList
solvedList
clock

totalTa

accessing arrivedList

arrivedList:
clock
clock:
observation Interval:

solvedList
solvedList:
totalTa
totalTa:

DEVS ext TransFn:externallnput :
intTransFn
outputFn
restart

3 137

I
I
I

U
I

displaying status
initialize-release initPorts
macros continue

holdln:forTime:
inject:value:
inject:value:elapsedTimne:
noOutput
passivate
passivateIn:

port creation send:toPoTr:

printing print On:
prinSt ring

private base VisualComponent
inport:

outport:
private-accessing name:

parent
parent:

I teXName
private-logging logEztTransFn

loglnt Transition:
logOutputEh:
logTimeAdvanceEh:

views view

instance creation makePair:observationlnterval:
new....:
new:observationInterval:

logging access isLogging
IogSiream:
teXFormat:

II
U

I 138

1
I
1

I
I
3 AtomicModel subclass: SimpleProcessorkodel

I This class implements the model described by Zeigler in section 4.2.

Instance variables:
jobID
processing Time

Testing:
This te.i is taken from Zeigler, p. 82ff. State is listed as: (szgma phase Job-id
processing- time)

p := SimpleProcessorModel makePair: 'P' processingTime: 5 minutes.
p restart.

"a" p x: (Content port: (p , #in) value: #xl).
"I "b" p e: 0 minutes.
"c" p extTransition. "State: (5 #busy #xl 5)"
" d" p outputEh.
"e" p intTransition. "State: (INF #passive #xl 5)"

"i4 p inject: (p .#in) value: elapsedTime: 0 minutes.
"J" p inject: (p , #in) value: f#z2 elapsedTime: 3 minutes.
"k" p outputEh.
"I" p intTransition. "State: (INF #passive #zl .5)"

I name
parent
processor
inport
outport
pixmap
x

sigma
phase
e
jobID
processingTime

I 139

I
I
I

accessing jobiD
jobID:
processingTime
processingTime:

DEVS ext TransFnwexternafln put:
in tTransFn
ouiputFn
restart

displaying status
initialize- release initPorts

macros continue
holdInjforTime:
injeci:value:
inject: value: elapsed Time:
no Output

passivate
passivateIn:
send:toPort:

port creationI
printing print~n:

private base VisualComponent

in port:
outport:Iprivate-accessingnae
parent:

private-logging logExt TransFn
logint Transition:
logOuIputEh:
logTimeAdvanceEh:

views view

instance creation makePair:processingTime:
new:_
new:processingTime:

logging access i .sLoggingI ~logSt ream:
teXFormat:

140

This is the text of file "simple test."

{\tt }Isimple test{\tt "I
I genr transd p at etp ri

{\tt "}Processors teXFormat: true.{\tt "I ~Processors JlogStream: 'simp.log' asFilename writeStream.
{\tt "lProcessors logStream: nil.{\tt ,I {\tt -}Close the log stream--later' '{\tt "

I genx : GeneratorModels makePair: IGENR' interarrivalTime: 10 minutes.
transd := TransducerModels makePair: 'TRANSD' observationlnterval: 100 minutes.
p SimpleProcessorModel makePair: 'P' processingTime: 5 minutes.

eI : (DigraphModels makePair: 'EF').

inport: #(~in);
outport: #(result out);
specifyChild~ren: ((OrderedCollection new) add: genr; add: transd; yourself);
{\tt "}External input coupling. .{\tt "I
addCouple: ef port: #in connectedTo: transd port: #isolved;
{\tt "}External output coupling.. {\tt 441

addCouple: genr port: flout connectedTo: ef port: #lout;
addCouple: transd port: #lout connectedTo: ef port: #result;
{\tt "}Internal coupling. .{\tt "I
addCouple: genr port: flout connectedTo: transd port: #ariv;
addConple: transd port: flout connectedTo: geur port: #istop.

efp := DigraphModels makePair: 'EF-PI).

epI ~inport: W0;
outport: #(~out);
specifyChildren: ((OrderedCollection new) add: p; add: ef; yourself);
priorityList: (COrderedCollection new)I addFirst: p;

addLast: ef; yourself)
("\tt "}External input coupling.. {\tt "I
{\tt "}External output coupling. .{\tt "I
addCouple: ef port: #iresult connectedTo: ef p port: #lout;

"}~t"Internal coupling.. \tt, "I
addCouple: p port: #lout connectedTo: ef port: #in;
addCouple: ef port: flout connectedTo: p port: #in.

r :~(RootCoordinator new: 'RCI).I r

141

startime:(Simuatio 110edate: (Date today) time: (Time frorr.$eccods:

linko~arnt:(efp processor).

Iiuainu~e r~:r

1I1

Bibliography

[RG89] Mary Beth Rosson and Eric Gold. Problem- solution mapping in
object-oriented design. In OOPSLA '89 Proceedings, lu9.

[Weg871 Peter Wegner. Dimensions of object-based language design. In OOIP-
SLA '87 Proceedings, New York, 1987. ACM.

[Zei9Og Bernard P. Zeigler. Object-Oriented Simulatton with Hterarchical, Mod-
ular Models: Intelligent Agents and Endomorphic Systemns. Academic
Press, 1990.

14I1

143

